x uchun yechish
x=-1
x=\frac{1}{6}\approx 0,166666667
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x^{2}-3x+8x=1
3x ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+5x=1
5x ni olish uchun -3x va 8x ni birlashtirish.
6x^{2}+5x-1=0
Ikkala tarafdan 1 ni ayirish.
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-1\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 5 ni b va -1 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 6\left(-1\right)}}{2\times 6}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-24\left(-1\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25+24}}{2\times 6}
-24 ni -1 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{49}}{2\times 6}
25 ni 24 ga qo'shish.
x=\frac{-5±7}{2\times 6}
49 ning kvadrat ildizini chiqarish.
x=\frac{-5±7}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{2}{12}
x=\frac{-5±7}{12} tenglamasini yeching, bunda ± musbat. -5 ni 7 ga qo'shish.
x=\frac{1}{6}
\frac{2}{12} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{12}{12}
x=\frac{-5±7}{12} tenglamasini yeching, bunda ± manfiy. -5 dan 7 ni ayirish.
x=-1
-12 ni 12 ga bo'lish.
x=\frac{1}{6} x=-1
Tenglama yechildi.
6x^{2}-3x+8x=1
3x ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}+5x=1
5x ni olish uchun -3x va 8x ni birlashtirish.
\frac{6x^{2}+5x}{6}=\frac{1}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{5}{6}x=\frac{1}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=\frac{1}{6}+\left(\frac{5}{12}\right)^{2}
\frac{5}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{12} olish uchun. Keyin, \frac{5}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{1}{6}+\frac{25}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{12} kvadratini chiqarish.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{49}{144}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{6} ni \frac{25}{144} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{12}\right)^{2}=\frac{49}{144}
x^{2}+\frac{5}{6}x+\frac{25}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{12}=\frac{7}{12} x+\frac{5}{12}=-\frac{7}{12}
Qisqartirish.
x=\frac{1}{6} x=-1
Tenglamaning ikkala tarafidan \frac{5}{12} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}