x uchun yechish
x=2\sqrt{10}+6\approx 12,32455532
x=6-2\sqrt{10}\approx -0,32455532
Grafik
Baham ko'rish
Klipbordga nusxa olish
-24x+3x^{2}=x^{2}+8
3x ga -8+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-24x+3x^{2}-x^{2}=8
Ikkala tarafdan x^{2} ni ayirish.
-24x+2x^{2}=8
2x^{2} ni olish uchun 3x^{2} va -x^{2} ni birlashtirish.
-24x+2x^{2}-8=0
Ikkala tarafdan 8 ni ayirish.
2x^{2}-24x-8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -24 ni b va -8 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\left(-8\right)}}{2\times 2}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576-8\left(-8\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576+64}}{2\times 2}
-8 ni -8 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{640}}{2\times 2}
576 ni 64 ga qo'shish.
x=\frac{-\left(-24\right)±8\sqrt{10}}{2\times 2}
640 ning kvadrat ildizini chiqarish.
x=\frac{24±8\sqrt{10}}{2\times 2}
-24 ning teskarisi 24 ga teng.
x=\frac{24±8\sqrt{10}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8\sqrt{10}+24}{4}
x=\frac{24±8\sqrt{10}}{4} tenglamasini yeching, bunda ± musbat. 24 ni 8\sqrt{10} ga qo'shish.
x=2\sqrt{10}+6
24+8\sqrt{10} ni 4 ga bo'lish.
x=\frac{24-8\sqrt{10}}{4}
x=\frac{24±8\sqrt{10}}{4} tenglamasini yeching, bunda ± manfiy. 24 dan 8\sqrt{10} ni ayirish.
x=6-2\sqrt{10}
24-8\sqrt{10} ni 4 ga bo'lish.
x=2\sqrt{10}+6 x=6-2\sqrt{10}
Tenglama yechildi.
-24x+3x^{2}=x^{2}+8
3x ga -8+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-24x+3x^{2}-x^{2}=8
Ikkala tarafdan x^{2} ni ayirish.
-24x+2x^{2}=8
2x^{2} ni olish uchun 3x^{2} va -x^{2} ni birlashtirish.
2x^{2}-24x=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-24x}{2}=\frac{8}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{24}{2}\right)x=\frac{8}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-12x=\frac{8}{2}
-24 ni 2 ga bo'lish.
x^{2}-12x=4
8 ni 2 ga bo'lish.
x^{2}-12x+\left(-6\right)^{2}=4+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=4+36
-6 kvadratini chiqarish.
x^{2}-12x+36=40
4 ni 36 ga qo'shish.
\left(x-6\right)^{2}=40
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{40}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=2\sqrt{10} x-6=-2\sqrt{10}
Qisqartirish.
x=2\sqrt{10}+6 x=6-2\sqrt{10}
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}