Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(3x-4\right)=0
x omili.
x=0 x=\frac{4}{3}
Tenglamani yechish uchun x=0 va 3x-4=0 ni yeching.
3x^{2}-4x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -4 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±4}{2\times 3}
\left(-4\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{4±4}{2\times 3}
-4 ning teskarisi 4 ga teng.
x=\frac{4±4}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{8}{6}
x=\frac{4±4}{6} tenglamasini yeching, bunda ± musbat. 4 ni 4 ga qo'shish.
x=\frac{4}{3}
\frac{8}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{6}
x=\frac{4±4}{6} tenglamasini yeching, bunda ± manfiy. 4 dan 4 ni ayirish.
x=0
0 ni 6 ga bo'lish.
x=\frac{4}{3} x=0
Tenglama yechildi.
3x^{2}-4x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{3x^{2}-4x}{3}=\frac{0}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{4}{3}x=\frac{0}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{3}x=0
0 ni 3 ga bo'lish.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
\left(x-\frac{2}{3}\right)^{2}=\frac{4}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{3}=\frac{2}{3} x-\frac{2}{3}=-\frac{2}{3}
Qisqartirish.
x=\frac{4}{3} x=0
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.