x uchun yechish
x=\frac{\sqrt{39}}{3}+6\approx 8,081665999
x=-\frac{\sqrt{39}}{3}+6\approx 3,918334001
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-36x+95=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 3\times 95}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -36 ni b va 95 ni c bilan almashtiring.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 3\times 95}}{2\times 3}
-36 kvadratini chiqarish.
x=\frac{-\left(-36\right)±\sqrt{1296-12\times 95}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-36\right)±\sqrt{1296-1140}}{2\times 3}
-12 ni 95 marotabaga ko'paytirish.
x=\frac{-\left(-36\right)±\sqrt{156}}{2\times 3}
1296 ni -1140 ga qo'shish.
x=\frac{-\left(-36\right)±2\sqrt{39}}{2\times 3}
156 ning kvadrat ildizini chiqarish.
x=\frac{36±2\sqrt{39}}{2\times 3}
-36 ning teskarisi 36 ga teng.
x=\frac{36±2\sqrt{39}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{39}+36}{6}
x=\frac{36±2\sqrt{39}}{6} tenglamasini yeching, bunda ± musbat. 36 ni 2\sqrt{39} ga qo'shish.
x=\frac{\sqrt{39}}{3}+6
36+2\sqrt{39} ni 6 ga bo'lish.
x=\frac{36-2\sqrt{39}}{6}
x=\frac{36±2\sqrt{39}}{6} tenglamasini yeching, bunda ± manfiy. 36 dan 2\sqrt{39} ni ayirish.
x=-\frac{\sqrt{39}}{3}+6
36-2\sqrt{39} ni 6 ga bo'lish.
x=\frac{\sqrt{39}}{3}+6 x=-\frac{\sqrt{39}}{3}+6
Tenglama yechildi.
3x^{2}-36x+95=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-36x+95-95=-95
Tenglamaning ikkala tarafidan 95 ni ayirish.
3x^{2}-36x=-95
O‘zidan 95 ayirilsa 0 qoladi.
\frac{3x^{2}-36x}{3}=-\frac{95}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{36}{3}\right)x=-\frac{95}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-12x=-\frac{95}{3}
-36 ni 3 ga bo'lish.
x^{2}-12x+\left(-6\right)^{2}=-\frac{95}{3}+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=-\frac{95}{3}+36
-6 kvadratini chiqarish.
x^{2}-12x+36=\frac{13}{3}
-\frac{95}{3} ni 36 ga qo'shish.
\left(x-6\right)^{2}=\frac{13}{3}
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{\frac{13}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=\frac{\sqrt{39}}{3} x-6=-\frac{\sqrt{39}}{3}
Qisqartirish.
x=\frac{\sqrt{39}}{3}+6 x=-\frac{\sqrt{39}}{3}+6
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}