Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-3x-225=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-225\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-225\right)}}{2\times 3}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-225\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+2700}}{2\times 3}
-12 ni -225 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{2709}}{2\times 3}
9 ni 2700 ga qo'shish.
x=\frac{-\left(-3\right)±3\sqrt{301}}{2\times 3}
2709 ning kvadrat ildizini chiqarish.
x=\frac{3±3\sqrt{301}}{2\times 3}
-3 ning teskarisi 3 ga teng.
x=\frac{3±3\sqrt{301}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{3\sqrt{301}+3}{6}
x=\frac{3±3\sqrt{301}}{6} tenglamasini yeching, bunda ± musbat. 3 ni 3\sqrt{301} ga qo'shish.
x=\frac{\sqrt{301}+1}{2}
3+3\sqrt{301} ni 6 ga bo'lish.
x=\frac{3-3\sqrt{301}}{6}
x=\frac{3±3\sqrt{301}}{6} tenglamasini yeching, bunda ± manfiy. 3 dan 3\sqrt{301} ni ayirish.
x=\frac{1-\sqrt{301}}{2}
3-3\sqrt{301} ni 6 ga bo'lish.
3x^{2}-3x-225=3\left(x-\frac{\sqrt{301}+1}{2}\right)\left(x-\frac{1-\sqrt{301}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{301}}{2} ga va x_{2} uchun \frac{1-\sqrt{301}}{2} ga bo‘ling.