Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-3x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -3 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-2\right)}}{2\times 3}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{33}}{2\times 3}
9 ni 24 ga qo'shish.
x=\frac{3±\sqrt{33}}{2\times 3}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{33}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{33}+3}{6}
x=\frac{3±\sqrt{33}}{6} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{33} ga qo'shish.
x=\frac{\sqrt{33}}{6}+\frac{1}{2}
3+\sqrt{33} ni 6 ga bo'lish.
x=\frac{3-\sqrt{33}}{6}
x=\frac{3±\sqrt{33}}{6} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{33} ni ayirish.
x=-\frac{\sqrt{33}}{6}+\frac{1}{2}
3-\sqrt{33} ni 6 ga bo'lish.
x=\frac{\sqrt{33}}{6}+\frac{1}{2} x=-\frac{\sqrt{33}}{6}+\frac{1}{2}
Tenglama yechildi.
3x^{2}-3x-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-3x-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}-3x=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
3x^{2}-3x=2
0 dan -2 ni ayirish.
\frac{3x^{2}-3x}{3}=\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{3}{3}\right)x=\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{2}{3}
-3 ni 3 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{2}{3}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{11}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=\frac{11}{12}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{33}}{6} x-\frac{1}{2}=-\frac{\sqrt{33}}{6}
Qisqartirish.
x=\frac{\sqrt{33}}{6}+\frac{1}{2} x=-\frac{\sqrt{33}}{6}+\frac{1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.