Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-20x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -20 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 3}}{2\times 3}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400-12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{388}}{2\times 3}
400 ni -12 ga qo'shish.
x=\frac{-\left(-20\right)±2\sqrt{97}}{2\times 3}
388 ning kvadrat ildizini chiqarish.
x=\frac{20±2\sqrt{97}}{2\times 3}
-20 ning teskarisi 20 ga teng.
x=\frac{20±2\sqrt{97}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{97}+20}{6}
x=\frac{20±2\sqrt{97}}{6} tenglamasini yeching, bunda ± musbat. 20 ni 2\sqrt{97} ga qo'shish.
x=\frac{\sqrt{97}+10}{3}
20+2\sqrt{97} ni 6 ga bo'lish.
x=\frac{20-2\sqrt{97}}{6}
x=\frac{20±2\sqrt{97}}{6} tenglamasini yeching, bunda ± manfiy. 20 dan 2\sqrt{97} ni ayirish.
x=\frac{10-\sqrt{97}}{3}
20-2\sqrt{97} ni 6 ga bo'lish.
x=\frac{\sqrt{97}+10}{3} x=\frac{10-\sqrt{97}}{3}
Tenglama yechildi.
3x^{2}-20x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-20x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
3x^{2}-20x=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{3x^{2}-20x}{3}=-\frac{1}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{20}{3}x=-\frac{1}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{10}{3}\right)^{2}
-\frac{20}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{10}{3} olish uchun. Keyin, -\frac{10}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{1}{3}+\frac{100}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{10}{3} kvadratini chiqarish.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{97}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{3} ni \frac{100}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{10}{3}\right)^{2}=\frac{97}{9}
x^{2}-\frac{20}{3}x+\frac{100}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{97}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{10}{3}=\frac{\sqrt{97}}{3} x-\frac{10}{3}=-\frac{\sqrt{97}}{3}
Qisqartirish.
x=\frac{\sqrt{97}+10}{3} x=\frac{10-\sqrt{97}}{3}
\frac{10}{3} ni tenglamaning ikkala tarafiga qo'shish.