Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-15x-6=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3x^{2}-15x-6-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
3x^{2}-15x-6-3=0
O‘zidan 3 ayirilsa 0 qoladi.
3x^{2}-15x-9=0
-6 dan 3 ni ayirish.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -15 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-9\right)}}{2\times 3}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-9\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{225+108}}{2\times 3}
-12 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{333}}{2\times 3}
225 ni 108 ga qo'shish.
x=\frac{-\left(-15\right)±3\sqrt{37}}{2\times 3}
333 ning kvadrat ildizini chiqarish.
x=\frac{15±3\sqrt{37}}{2\times 3}
-15 ning teskarisi 15 ga teng.
x=\frac{15±3\sqrt{37}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{3\sqrt{37}+15}{6}
x=\frac{15±3\sqrt{37}}{6} tenglamasini yeching, bunda ± musbat. 15 ni 3\sqrt{37} ga qo'shish.
x=\frac{\sqrt{37}+5}{2}
15+3\sqrt{37} ni 6 ga bo'lish.
x=\frac{15-3\sqrt{37}}{6}
x=\frac{15±3\sqrt{37}}{6} tenglamasini yeching, bunda ± manfiy. 15 dan 3\sqrt{37} ni ayirish.
x=\frac{5-\sqrt{37}}{2}
15-3\sqrt{37} ni 6 ga bo'lish.
x=\frac{\sqrt{37}+5}{2} x=\frac{5-\sqrt{37}}{2}
Tenglama yechildi.
3x^{2}-15x-6=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-15x-6-\left(-6\right)=3-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}-15x=3-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
3x^{2}-15x=9
3 dan -6 ni ayirish.
\frac{3x^{2}-15x}{3}=\frac{9}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{9}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{9}{3}
-15 ni 3 ga bo'lish.
x^{2}-5x=3
9 ni 3 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=3+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=3+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{37}{4}
3 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=\frac{37}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{37}}{2} x-\frac{5}{2}=-\frac{\sqrt{37}}{2}
Qisqartirish.
x=\frac{\sqrt{37}+5}{2} x=\frac{5-\sqrt{37}}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.