x uchun yechish
x = \frac{\sqrt{21001} + 149}{3} \approx 97,972405916
x = \frac{149 - \sqrt{21001}}{3} \approx 1,360927417
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-298x+400=0
298 hosil qilish uchun 149 va 2 ni ko'paytirish.
x=\frac{-\left(-298\right)±\sqrt{\left(-298\right)^{2}-4\times 3\times 400}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -298 ni b va 400 ni c bilan almashtiring.
x=\frac{-\left(-298\right)±\sqrt{88804-4\times 3\times 400}}{2\times 3}
-298 kvadratini chiqarish.
x=\frac{-\left(-298\right)±\sqrt{88804-12\times 400}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-298\right)±\sqrt{88804-4800}}{2\times 3}
-12 ni 400 marotabaga ko'paytirish.
x=\frac{-\left(-298\right)±\sqrt{84004}}{2\times 3}
88804 ni -4800 ga qo'shish.
x=\frac{-\left(-298\right)±2\sqrt{21001}}{2\times 3}
84004 ning kvadrat ildizini chiqarish.
x=\frac{298±2\sqrt{21001}}{2\times 3}
-298 ning teskarisi 298 ga teng.
x=\frac{298±2\sqrt{21001}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{21001}+298}{6}
x=\frac{298±2\sqrt{21001}}{6} tenglamasini yeching, bunda ± musbat. 298 ni 2\sqrt{21001} ga qo'shish.
x=\frac{\sqrt{21001}+149}{3}
298+2\sqrt{21001} ni 6 ga bo'lish.
x=\frac{298-2\sqrt{21001}}{6}
x=\frac{298±2\sqrt{21001}}{6} tenglamasini yeching, bunda ± manfiy. 298 dan 2\sqrt{21001} ni ayirish.
x=\frac{149-\sqrt{21001}}{3}
298-2\sqrt{21001} ni 6 ga bo'lish.
x=\frac{\sqrt{21001}+149}{3} x=\frac{149-\sqrt{21001}}{3}
Tenglama yechildi.
3x^{2}-298x+400=0
298 hosil qilish uchun 149 va 2 ni ko'paytirish.
3x^{2}-298x=-400
Ikkala tarafdan 400 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{3x^{2}-298x}{3}=-\frac{400}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{298}{3}x=-\frac{400}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{298}{3}x+\left(-\frac{149}{3}\right)^{2}=-\frac{400}{3}+\left(-\frac{149}{3}\right)^{2}
-\frac{298}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{149}{3} olish uchun. Keyin, -\frac{149}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{298}{3}x+\frac{22201}{9}=-\frac{400}{3}+\frac{22201}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{149}{3} kvadratini chiqarish.
x^{2}-\frac{298}{3}x+\frac{22201}{9}=\frac{21001}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{400}{3} ni \frac{22201}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{149}{3}\right)^{2}=\frac{21001}{9}
x^{2}-\frac{298}{3}x+\frac{22201}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{149}{3}\right)^{2}}=\sqrt{\frac{21001}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{149}{3}=\frac{\sqrt{21001}}{3} x-\frac{149}{3}=-\frac{\sqrt{21001}}{3}
Qisqartirish.
x=\frac{\sqrt{21001}+149}{3} x=\frac{149-\sqrt{21001}}{3}
\frac{149}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}