x uchun yechish
x=\sqrt{2}+2\approx 3,414213562
x=2-\sqrt{2}\approx 0,585786438
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-12x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 6}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -12 ni b va 6 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 6}}{2\times 3}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 6}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144-72}}{2\times 3}
-12 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{72}}{2\times 3}
144 ni -72 ga qo'shish.
x=\frac{-\left(-12\right)±6\sqrt{2}}{2\times 3}
72 ning kvadrat ildizini chiqarish.
x=\frac{12±6\sqrt{2}}{2\times 3}
-12 ning teskarisi 12 ga teng.
x=\frac{12±6\sqrt{2}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{6\sqrt{2}+12}{6}
x=\frac{12±6\sqrt{2}}{6} tenglamasini yeching, bunda ± musbat. 12 ni 6\sqrt{2} ga qo'shish.
x=\sqrt{2}+2
12+6\sqrt{2} ni 6 ga bo'lish.
x=\frac{12-6\sqrt{2}}{6}
x=\frac{12±6\sqrt{2}}{6} tenglamasini yeching, bunda ± manfiy. 12 dan 6\sqrt{2} ni ayirish.
x=2-\sqrt{2}
12-6\sqrt{2} ni 6 ga bo'lish.
x=\sqrt{2}+2 x=2-\sqrt{2}
Tenglama yechildi.
3x^{2}-12x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-12x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
3x^{2}-12x=-6
O‘zidan 6 ayirilsa 0 qoladi.
\frac{3x^{2}-12x}{3}=-\frac{6}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{6}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{6}{3}
-12 ni 3 ga bo'lish.
x^{2}-4x=-2
-6 ni 3 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-2+4
-2 kvadratini chiqarish.
x^{2}-4x+4=2
-2 ni 4 ga qo'shish.
\left(x-2\right)^{2}=2
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\sqrt{2} x-2=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}+2 x=2-\sqrt{2}
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}