Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+881x+10086=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3x^{2}+881x+10086-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
3x^{2}+881x+10086-3=0
O‘zidan 3 ayirilsa 0 qoladi.
3x^{2}+881x+10083=0
10086 dan 3 ni ayirish.
x=\frac{-881±\sqrt{881^{2}-4\times 3\times 10083}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 881 ni b va 10083 ni c bilan almashtiring.
x=\frac{-881±\sqrt{776161-4\times 3\times 10083}}{2\times 3}
881 kvadratini chiqarish.
x=\frac{-881±\sqrt{776161-12\times 10083}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-881±\sqrt{776161-120996}}{2\times 3}
-12 ni 10083 marotabaga ko'paytirish.
x=\frac{-881±\sqrt{655165}}{2\times 3}
776161 ni -120996 ga qo'shish.
x=\frac{-881±\sqrt{655165}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{655165}-881}{6}
x=\frac{-881±\sqrt{655165}}{6} tenglamasini yeching, bunda ± musbat. -881 ni \sqrt{655165} ga qo'shish.
x=\frac{-\sqrt{655165}-881}{6}
x=\frac{-881±\sqrt{655165}}{6} tenglamasini yeching, bunda ± manfiy. -881 dan \sqrt{655165} ni ayirish.
x=\frac{\sqrt{655165}-881}{6} x=\frac{-\sqrt{655165}-881}{6}
Tenglama yechildi.
3x^{2}+881x+10086=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+881x+10086-10086=3-10086
Tenglamaning ikkala tarafidan 10086 ni ayirish.
3x^{2}+881x=3-10086
O‘zidan 10086 ayirilsa 0 qoladi.
3x^{2}+881x=-10083
3 dan 10086 ni ayirish.
\frac{3x^{2}+881x}{3}=-\frac{10083}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{881}{3}x=-\frac{10083}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{881}{3}x=-3361
-10083 ni 3 ga bo'lish.
x^{2}+\frac{881}{3}x+\left(\frac{881}{6}\right)^{2}=-3361+\left(\frac{881}{6}\right)^{2}
\frac{881}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{881}{6} olish uchun. Keyin, \frac{881}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{881}{3}x+\frac{776161}{36}=-3361+\frac{776161}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{881}{6} kvadratini chiqarish.
x^{2}+\frac{881}{3}x+\frac{776161}{36}=\frac{655165}{36}
-3361 ni \frac{776161}{36} ga qo'shish.
\left(x+\frac{881}{6}\right)^{2}=\frac{655165}{36}
x^{2}+\frac{881}{3}x+\frac{776161}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{881}{6}\right)^{2}}=\sqrt{\frac{655165}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{881}{6}=\frac{\sqrt{655165}}{6} x+\frac{881}{6}=-\frac{\sqrt{655165}}{6}
Qisqartirish.
x=\frac{\sqrt{655165}-881}{6} x=\frac{-\sqrt{655165}-881}{6}
Tenglamaning ikkala tarafidan \frac{881}{6} ni ayirish.