Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+72x-55=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-72±\sqrt{72^{2}-4\times 3\left(-55\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-72±\sqrt{5184-4\times 3\left(-55\right)}}{2\times 3}
72 kvadratini chiqarish.
x=\frac{-72±\sqrt{5184-12\left(-55\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-72±\sqrt{5184+660}}{2\times 3}
-12 ni -55 marotabaga ko'paytirish.
x=\frac{-72±\sqrt{5844}}{2\times 3}
5184 ni 660 ga qo'shish.
x=\frac{-72±2\sqrt{1461}}{2\times 3}
5844 ning kvadrat ildizini chiqarish.
x=\frac{-72±2\sqrt{1461}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{1461}-72}{6}
x=\frac{-72±2\sqrt{1461}}{6} tenglamasini yeching, bunda ± musbat. -72 ni 2\sqrt{1461} ga qo'shish.
x=\frac{\sqrt{1461}}{3}-12
-72+2\sqrt{1461} ni 6 ga bo'lish.
x=\frac{-2\sqrt{1461}-72}{6}
x=\frac{-72±2\sqrt{1461}}{6} tenglamasini yeching, bunda ± manfiy. -72 dan 2\sqrt{1461} ni ayirish.
x=-\frac{\sqrt{1461}}{3}-12
-72-2\sqrt{1461} ni 6 ga bo'lish.
3x^{2}+72x-55=3\left(x-\left(\frac{\sqrt{1461}}{3}-12\right)\right)\left(x-\left(-\frac{\sqrt{1461}}{3}-12\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -12+\frac{\sqrt{1461}}{3} ga va x_{2} uchun -12-\frac{\sqrt{1461}}{3} ga bo‘ling.