x uchun yechish
x=\frac{\sqrt{13}-7}{6}\approx -0,565741454
x=\frac{-\sqrt{13}-7}{6}\approx -1,767591879
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+7x+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\times 3\times 3}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 7 ni b va 3 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 3\times 3}}{2\times 3}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-12\times 3}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49-36}}{2\times 3}
-12 ni 3 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{13}}{2\times 3}
49 ni -36 ga qo'shish.
x=\frac{-7±\sqrt{13}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{13}-7}{6}
x=\frac{-7±\sqrt{13}}{6} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{13} ga qo'shish.
x=\frac{-\sqrt{13}-7}{6}
x=\frac{-7±\sqrt{13}}{6} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{13} ni ayirish.
x=\frac{\sqrt{13}-7}{6} x=\frac{-\sqrt{13}-7}{6}
Tenglama yechildi.
3x^{2}+7x+3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+7x+3-3=-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
3x^{2}+7x=-3
O‘zidan 3 ayirilsa 0 qoladi.
\frac{3x^{2}+7x}{3}=-\frac{3}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{7}{3}x=-\frac{3}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{3}x=-1
-3 ni 3 ga bo'lish.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-1+\left(\frac{7}{6}\right)^{2}
\frac{7}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{6} olish uchun. Keyin, \frac{7}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-1+\frac{49}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{6} kvadratini chiqarish.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{13}{36}
-1 ni \frac{49}{36} ga qo'shish.
\left(x+\frac{7}{6}\right)^{2}=\frac{13}{36}
x^{2}+\frac{7}{3}x+\frac{49}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{6}=\frac{\sqrt{13}}{6} x+\frac{7}{6}=-\frac{\sqrt{13}}{6}
Qisqartirish.
x=\frac{\sqrt{13}-7}{6} x=\frac{-\sqrt{13}-7}{6}
Tenglamaning ikkala tarafidan \frac{7}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}