x uchun yechish (complex solution)
x=-\frac{2\sqrt{21}i}{3}\approx -0-3,055050463i
x=\frac{2\sqrt{21}i}{3}\approx 3,055050463i
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}=12-40
Ikkala tarafdan 40 ni ayirish.
3x^{2}=-28
-28 olish uchun 12 dan 40 ni ayirish.
x^{2}=-\frac{28}{3}
Ikki tarafini 3 ga bo‘ling.
x=\frac{2\sqrt{21}i}{3} x=-\frac{2\sqrt{21}i}{3}
Tenglama yechildi.
3x^{2}+40-12=0
Ikkala tarafdan 12 ni ayirish.
3x^{2}+28=0
28 olish uchun 40 dan 12 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 28}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 0 ni b va 28 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 3\times 28}}{2\times 3}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-12\times 28}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-336}}{2\times 3}
-12 ni 28 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{21}i}{2\times 3}
-336 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{21}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{21}i}{3}
x=\frac{0±4\sqrt{21}i}{6} tenglamasini yeching, bunda ± musbat.
x=-\frac{2\sqrt{21}i}{3}
x=\frac{0±4\sqrt{21}i}{6} tenglamasini yeching, bunda ± manfiy.
x=\frac{2\sqrt{21}i}{3} x=-\frac{2\sqrt{21}i}{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}