Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+4x-5=1
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3x^{2}+4x-5-1=1-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
3x^{2}+4x-5-1=0
O‘zidan 1 ayirilsa 0 qoladi.
3x^{2}+4x-6=0
-5 dan 1 ni ayirish.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-6\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 4 ni b va -6 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\times 3\left(-6\right)}}{2\times 3}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-12\left(-6\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+72}}{2\times 3}
-12 ni -6 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{88}}{2\times 3}
16 ni 72 ga qo'shish.
x=\frac{-4±2\sqrt{22}}{2\times 3}
88 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{22}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{22}-4}{6}
x=\frac{-4±2\sqrt{22}}{6} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{22} ga qo'shish.
x=\frac{\sqrt{22}-2}{3}
-4+2\sqrt{22} ni 6 ga bo'lish.
x=\frac{-2\sqrt{22}-4}{6}
x=\frac{-4±2\sqrt{22}}{6} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{22} ni ayirish.
x=\frac{-\sqrt{22}-2}{3}
-4-2\sqrt{22} ni 6 ga bo'lish.
x=\frac{\sqrt{22}-2}{3} x=\frac{-\sqrt{22}-2}{3}
Tenglama yechildi.
3x^{2}+4x-5=1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+4x-5-\left(-5\right)=1-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}+4x=1-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
3x^{2}+4x=6
1 dan -5 ni ayirish.
\frac{3x^{2}+4x}{3}=\frac{6}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{4}{3}x=\frac{6}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{3}x=2
6 ni 3 ga bo'lish.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=2+\left(\frac{2}{3}\right)^{2}
\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{3} olish uchun. Keyin, \frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{3}x+\frac{4}{9}=2+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{22}{9}
2 ni \frac{4}{9} ga qo'shish.
\left(x+\frac{2}{3}\right)^{2}=\frac{22}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{22}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{3}=\frac{\sqrt{22}}{3} x+\frac{2}{3}=-\frac{\sqrt{22}}{3}
Qisqartirish.
x=\frac{\sqrt{22}-2}{3} x=\frac{-\sqrt{22}-2}{3}
Tenglamaning ikkala tarafidan \frac{2}{3} ni ayirish.