Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+4x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-1\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 4 ni b va -1 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\times 3\left(-1\right)}}{2\times 3}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-12\left(-1\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+12}}{2\times 3}
-12 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{28}}{2\times 3}
16 ni 12 ga qo'shish.
x=\frac{-4±2\sqrt{7}}{2\times 3}
28 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{7}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{7}-4}{6}
x=\frac{-4±2\sqrt{7}}{6} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{7} ga qo'shish.
x=\frac{\sqrt{7}-2}{3}
-4+2\sqrt{7} ni 6 ga bo'lish.
x=\frac{-2\sqrt{7}-4}{6}
x=\frac{-4±2\sqrt{7}}{6} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{7} ni ayirish.
x=\frac{-\sqrt{7}-2}{3}
-4-2\sqrt{7} ni 6 ga bo'lish.
x=\frac{\sqrt{7}-2}{3} x=\frac{-\sqrt{7}-2}{3}
Tenglama yechildi.
3x^{2}+4x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+4x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}+4x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
3x^{2}+4x=1
0 dan -1 ni ayirish.
\frac{3x^{2}+4x}{3}=\frac{1}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{4}{3}x=\frac{1}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{3} olish uchun. Keyin, \frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{3}+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{7}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{3} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{2}{3}\right)^{2}=\frac{7}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{3}=\frac{\sqrt{7}}{3} x+\frac{2}{3}=-\frac{\sqrt{7}}{3}
Qisqartirish.
x=\frac{\sqrt{7}-2}{3} x=\frac{-\sqrt{7}-2}{3}
Tenglamaning ikkala tarafidan \frac{2}{3} ni ayirish.