Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+4x-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\times 3\left(-1\right)}}{2\times 3}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-12\left(-1\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+12}}{2\times 3}
-12 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{28}}{2\times 3}
16 ni 12 ga qo'shish.
x=\frac{-4±2\sqrt{7}}{2\times 3}
28 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{7}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{7}-4}{6}
x=\frac{-4±2\sqrt{7}}{6} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{7} ga qo'shish.
x=\frac{\sqrt{7}-2}{3}
-4+2\sqrt{7} ni 6 ga bo'lish.
x=\frac{-2\sqrt{7}-4}{6}
x=\frac{-4±2\sqrt{7}}{6} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{7} ni ayirish.
x=\frac{-\sqrt{7}-2}{3}
-4-2\sqrt{7} ni 6 ga bo'lish.
3x^{2}+4x-1=3\left(x-\frac{\sqrt{7}-2}{3}\right)\left(x-\frac{-\sqrt{7}-2}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-2+\sqrt{7}}{3} ga va x_{2} uchun \frac{-2-\sqrt{7}}{3} ga bo‘ling.