Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+2x-10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-10\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\times 3\left(-10\right)}}{2\times 3}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-12\left(-10\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+120}}{2\times 3}
-12 ni -10 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{124}}{2\times 3}
4 ni 120 ga qo'shish.
x=\frac{-2±2\sqrt{31}}{2\times 3}
124 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{31}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{31}-2}{6}
x=\frac{-2±2\sqrt{31}}{6} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{31} ga qo'shish.
x=\frac{\sqrt{31}-1}{3}
-2+2\sqrt{31} ni 6 ga bo'lish.
x=\frac{-2\sqrt{31}-2}{6}
x=\frac{-2±2\sqrt{31}}{6} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{31} ni ayirish.
x=\frac{-\sqrt{31}-1}{3}
-2-2\sqrt{31} ni 6 ga bo'lish.
3x^{2}+2x-10=3\left(x-\frac{\sqrt{31}-1}{3}\right)\left(x-\frac{-\sqrt{31}-1}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{31}}{3} ga va x_{2} uchun \frac{-1-\sqrt{31}}{3} ga bo‘ling.