x uchun yechish
x = \frac{2 \sqrt{10} - 1}{3} \approx 1,774851773
x=\frac{-2\sqrt{10}-1}{3}\approx -2,44151844
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+2x+5=18
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3x^{2}+2x+5-18=18-18
Tenglamaning ikkala tarafidan 18 ni ayirish.
3x^{2}+2x+5-18=0
O‘zidan 18 ayirilsa 0 qoladi.
3x^{2}+2x-13=0
5 dan 18 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-13\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 2 ni b va -13 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 3\left(-13\right)}}{2\times 3}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-12\left(-13\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+156}}{2\times 3}
-12 ni -13 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{160}}{2\times 3}
4 ni 156 ga qo'shish.
x=\frac{-2±4\sqrt{10}}{2\times 3}
160 ning kvadrat ildizini chiqarish.
x=\frac{-2±4\sqrt{10}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{4\sqrt{10}-2}{6}
x=\frac{-2±4\sqrt{10}}{6} tenglamasini yeching, bunda ± musbat. -2 ni 4\sqrt{10} ga qo'shish.
x=\frac{2\sqrt{10}-1}{3}
-2+4\sqrt{10} ni 6 ga bo'lish.
x=\frac{-4\sqrt{10}-2}{6}
x=\frac{-2±4\sqrt{10}}{6} tenglamasini yeching, bunda ± manfiy. -2 dan 4\sqrt{10} ni ayirish.
x=\frac{-2\sqrt{10}-1}{3}
-2-4\sqrt{10} ni 6 ga bo'lish.
x=\frac{2\sqrt{10}-1}{3} x=\frac{-2\sqrt{10}-1}{3}
Tenglama yechildi.
3x^{2}+2x+5=18
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+2x+5-5=18-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
3x^{2}+2x=18-5
O‘zidan 5 ayirilsa 0 qoladi.
3x^{2}+2x=13
18 dan 5 ni ayirish.
\frac{3x^{2}+2x}{3}=\frac{13}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{2}{3}x=\frac{13}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{13}{3}+\left(\frac{1}{3}\right)^{2}
\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{3} olish uchun. Keyin, \frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{13}{3}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{3} kvadratini chiqarish.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{40}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{13}{3} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{3}\right)^{2}=\frac{40}{9}
x^{2}+\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{40}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{3}=\frac{2\sqrt{10}}{3} x+\frac{1}{3}=-\frac{2\sqrt{10}}{3}
Qisqartirish.
x=\frac{2\sqrt{10}-1}{3} x=\frac{-2\sqrt{10}-1}{3}
Tenglamaning ikkala tarafidan \frac{1}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}