Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+15x-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-15±\sqrt{15^{2}-4\times 3\left(-12\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 15 ni b va -12 ni c bilan almashtiring.
x=\frac{-15±\sqrt{225-4\times 3\left(-12\right)}}{2\times 3}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225-12\left(-12\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{225+144}}{2\times 3}
-12 ni -12 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{369}}{2\times 3}
225 ni 144 ga qo'shish.
x=\frac{-15±3\sqrt{41}}{2\times 3}
369 ning kvadrat ildizini chiqarish.
x=\frac{-15±3\sqrt{41}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{3\sqrt{41}-15}{6}
x=\frac{-15±3\sqrt{41}}{6} tenglamasini yeching, bunda ± musbat. -15 ni 3\sqrt{41} ga qo'shish.
x=\frac{\sqrt{41}-5}{2}
-15+3\sqrt{41} ni 6 ga bo'lish.
x=\frac{-3\sqrt{41}-15}{6}
x=\frac{-15±3\sqrt{41}}{6} tenglamasini yeching, bunda ± manfiy. -15 dan 3\sqrt{41} ni ayirish.
x=\frac{-\sqrt{41}-5}{2}
-15-3\sqrt{41} ni 6 ga bo'lish.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
Tenglama yechildi.
3x^{2}+15x-12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+15x-12-\left(-12\right)=-\left(-12\right)
12 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}+15x=-\left(-12\right)
O‘zidan -12 ayirilsa 0 qoladi.
3x^{2}+15x=12
0 dan -12 ni ayirish.
\frac{3x^{2}+15x}{3}=\frac{12}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{15}{3}x=\frac{12}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+5x=\frac{12}{3}
15 ni 3 ga bo'lish.
x^{2}+5x=4
12 ni 3 ga bo'lish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=4+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=4+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{41}{4}
4 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{41}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{\sqrt{41}}{2} x+\frac{5}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.