x, y uchun yechish
x=-5
y=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x+9-6y=0
Birinchi tenglamani yeching. Ikkala tarafdan 6y ni ayirish.
3x-6y=-9
Ikkala tarafdan 9 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2x-2y=12
Ikkinchi tenglamani yeching. 12 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
3x-6y=-9,-2x-2y=12
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
3x-6y=-9
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
3x=6y-9
6y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{3}\left(6y-9\right)
Ikki tarafini 3 ga bo‘ling.
x=2y-3
\frac{1}{3} ni 6y-9 marotabaga ko'paytirish.
-2\left(2y-3\right)-2y=12
2y-3 ni x uchun boshqa tenglamada almashtirish, -2x-2y=12.
-4y+6-2y=12
-2 ni 2y-3 marotabaga ko'paytirish.
-6y+6=12
-4y ni -2y ga qo'shish.
-6y=6
Tenglamaning ikkala tarafidan 6 ni ayirish.
y=-1
Ikki tarafini -6 ga bo‘ling.
x=2\left(-1\right)-3
-1 ni y uchun x=2y-3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-2-3
2 ni -1 marotabaga ko'paytirish.
x=-5
-3 ni -2 ga qo'shish.
x=-5,y=-1
Tizim hal qilindi.
3x+9-6y=0
Birinchi tenglamani yeching. Ikkala tarafdan 6y ni ayirish.
3x-6y=-9
Ikkala tarafdan 9 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2x-2y=12
Ikkinchi tenglamani yeching. 12 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
3x-6y=-9,-2x-2y=12
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\12\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-6\left(-2\right)\right)}&-\frac{-6}{3\left(-2\right)-\left(-6\left(-2\right)\right)}\\-\frac{-2}{3\left(-2\right)-\left(-6\left(-2\right)\right)}&\frac{3}{3\left(-2\right)-\left(-6\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\12\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{1}{3}\\-\frac{1}{9}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-9\\12\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\left(-9\right)-\frac{1}{3}\times 12\\-\frac{1}{9}\left(-9\right)-\frac{1}{6}\times 12\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-5,y=-1
x va y matritsa elementlarini chiqarib olish.
3x+9-6y=0
Birinchi tenglamani yeching. Ikkala tarafdan 6y ni ayirish.
3x-6y=-9
Ikkala tarafdan 9 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-2x-2y=12
Ikkinchi tenglamani yeching. 12 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
3x-6y=-9,-2x-2y=12
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
-2\times 3x-2\left(-6\right)y=-2\left(-9\right),3\left(-2\right)x+3\left(-2\right)y=3\times 12
3x va -2x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni -2 ga va ikkinchining har bir tarafidagi barcha shartlarni 3 ga ko'paytiring.
-6x+12y=18,-6x-6y=36
Qisqartirish.
-6x+6x+12y+6y=18-36
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -6x+12y=18 dan -6x-6y=36 ni ayirish.
12y+6y=18-36
-6x ni 6x ga qo'shish. -6x va 6x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
18y=18-36
12y ni 6y ga qo'shish.
18y=-18
18 ni -36 ga qo'shish.
y=-1
Ikki tarafini 18 ga bo‘ling.
-2x-2\left(-1\right)=12
-1 ni y uchun -2x-2y=12 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
-2x+2=12
-2 ni -1 marotabaga ko'paytirish.
-2x=10
Tenglamaning ikkala tarafidan 2 ni ayirish.
x=-5
Ikki tarafini -2 ga bo‘ling.
x=-5,y=-1
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}