Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+3x+6=5
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-x^{2}+3x+6-5=5-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-x^{2}+3x+6-5=0
O‘zidan 5 ayirilsa 0 qoladi.
-x^{2}+3x+1=0
6 dan 5 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va 1 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-1\right)}}{2\left(-1\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+4}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{13}}{2\left(-1\right)}
9 ni 4 ga qo'shish.
x=\frac{-3±\sqrt{13}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{13}-3}{-2}
x=\frac{-3±\sqrt{13}}{-2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{13} ga qo'shish.
x=\frac{3-\sqrt{13}}{2}
-3+\sqrt{13} ni -2 ga bo'lish.
x=\frac{-\sqrt{13}-3}{-2}
x=\frac{-3±\sqrt{13}}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{13} ni ayirish.
x=\frac{\sqrt{13}+3}{2}
-3-\sqrt{13} ni -2 ga bo'lish.
x=\frac{3-\sqrt{13}}{2} x=\frac{\sqrt{13}+3}{2}
Tenglama yechildi.
-x^{2}+3x+6=5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+3x+6-6=5-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
-x^{2}+3x=5-6
O‘zidan 6 ayirilsa 0 qoladi.
-x^{2}+3x=-1
5 dan 6 ni ayirish.
\frac{-x^{2}+3x}{-1}=-\frac{1}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{3}{-1}x=-\frac{1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{1}{-1}
3 ni -1 ga bo'lish.
x^{2}-3x=1
-1 ni -1 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=1+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=1+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{13}{4}
1 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{13}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{13}}{2} x-\frac{3}{2}=-\frac{\sqrt{13}}{2}
Qisqartirish.
x=\frac{\sqrt{13}+3}{2} x=\frac{3-\sqrt{13}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.