x, y uchun yechish
x=2
y=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x+2y=8,5x-4y=6
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
3x+2y=8
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
3x=-2y+8
Tenglamaning ikkala tarafidan 2y ni ayirish.
x=\frac{1}{3}\left(-2y+8\right)
Ikki tarafini 3 ga bo‘ling.
x=-\frac{2}{3}y+\frac{8}{3}
\frac{1}{3} ni -2y+8 marotabaga ko'paytirish.
5\left(-\frac{2}{3}y+\frac{8}{3}\right)-4y=6
\frac{-2y+8}{3} ni x uchun boshqa tenglamada almashtirish, 5x-4y=6.
-\frac{10}{3}y+\frac{40}{3}-4y=6
5 ni \frac{-2y+8}{3} marotabaga ko'paytirish.
-\frac{22}{3}y+\frac{40}{3}=6
-\frac{10y}{3} ni -4y ga qo'shish.
-\frac{22}{3}y=-\frac{22}{3}
Tenglamaning ikkala tarafidan \frac{40}{3} ni ayirish.
y=1
Tenglamaning ikki tarafini -\frac{22}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{-2+8}{3}
1 ni y uchun x=-\frac{2}{3}y+\frac{8}{3} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=2
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni -\frac{2}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=2,y=1
Tizim hal qilindi.
3x+2y=8,5x-4y=6
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
\left(\begin{matrix}3&2\\5&-4\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-2\times 5}&-\frac{2}{3\left(-4\right)-2\times 5}\\-\frac{5}{3\left(-4\right)-2\times 5}&\frac{3}{3\left(-4\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\\frac{5}{22}&-\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 8+\frac{1}{11}\times 6\\\frac{5}{22}\times 8-\frac{3}{22}\times 6\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=2,y=1
x va y matritsa elementlarini chiqarib olish.
3x+2y=8,5x-4y=6
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
5\times 3x+5\times 2y=5\times 8,3\times 5x+3\left(-4\right)y=3\times 6
3x va 5x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 5 ga va ikkinchining har bir tarafidagi barcha shartlarni 3 ga ko'paytiring.
15x+10y=40,15x-12y=18
Qisqartirish.
15x-15x+10y+12y=40-18
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 15x+10y=40 dan 15x-12y=18 ni ayirish.
10y+12y=40-18
15x ni -15x ga qo'shish. 15x va -15x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
22y=40-18
10y ni 12y ga qo'shish.
22y=22
40 ni -18 ga qo'shish.
y=1
Ikki tarafini 22 ga bo‘ling.
5x-4=6
1 ni y uchun 5x-4y=6 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
5x=10
4 ni tenglamaning ikkala tarafiga qo'shish.
x=2
Ikki tarafini 5 ga bo‘ling.
x=2,y=1
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}