x uchun yechish
x=\frac{1-\sqrt{5}}{2}\approx -0,618033989
x = \frac{\sqrt{5} + 1}{2} \approx 1,618033989
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x\left(3x+2\right)+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
x qiymati -\frac{2}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3x+2 ga ko'paytirish.
9x^{2}+6x+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
3x ga 3x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}+6x+6x+4+1=7\left(3x+2\right)
3x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}+12x+4+1=7\left(3x+2\right)
12x ni olish uchun 6x va 6x ni birlashtirish.
9x^{2}+12x+5=7\left(3x+2\right)
5 olish uchun 4 va 1'ni qo'shing.
9x^{2}+12x+5=21x+14
7 ga 3x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}+12x+5-21x=14
Ikkala tarafdan 21x ni ayirish.
9x^{2}-9x+5=14
-9x ni olish uchun 12x va -21x ni birlashtirish.
9x^{2}-9x+5-14=0
Ikkala tarafdan 14 ni ayirish.
9x^{2}-9x-9=0
-9 olish uchun 5 dan 14 ni ayirish.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-9\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -9 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-9\right)}}{2\times 9}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-36\left(-9\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{81+324}}{2\times 9}
-36 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{405}}{2\times 9}
81 ni 324 ga qo'shish.
x=\frac{-\left(-9\right)±9\sqrt{5}}{2\times 9}
405 ning kvadrat ildizini chiqarish.
x=\frac{9±9\sqrt{5}}{2\times 9}
-9 ning teskarisi 9 ga teng.
x=\frac{9±9\sqrt{5}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{9\sqrt{5}+9}{18}
x=\frac{9±9\sqrt{5}}{18} tenglamasini yeching, bunda ± musbat. 9 ni 9\sqrt{5} ga qo'shish.
x=\frac{\sqrt{5}+1}{2}
9+9\sqrt{5} ni 18 ga bo'lish.
x=\frac{9-9\sqrt{5}}{18}
x=\frac{9±9\sqrt{5}}{18} tenglamasini yeching, bunda ± manfiy. 9 dan 9\sqrt{5} ni ayirish.
x=\frac{1-\sqrt{5}}{2}
9-9\sqrt{5} ni 18 ga bo'lish.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Tenglama yechildi.
3x\left(3x+2\right)+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
x qiymati -\frac{2}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3x+2 ga ko'paytirish.
9x^{2}+6x+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
3x ga 3x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}+6x+6x+4+1=7\left(3x+2\right)
3x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}+12x+4+1=7\left(3x+2\right)
12x ni olish uchun 6x va 6x ni birlashtirish.
9x^{2}+12x+5=7\left(3x+2\right)
5 olish uchun 4 va 1'ni qo'shing.
9x^{2}+12x+5=21x+14
7 ga 3x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}+12x+5-21x=14
Ikkala tarafdan 21x ni ayirish.
9x^{2}-9x+5=14
-9x ni olish uchun 12x va -21x ni birlashtirish.
9x^{2}-9x=14-5
Ikkala tarafdan 5 ni ayirish.
9x^{2}-9x=9
9 olish uchun 14 dan 5 ni ayirish.
\frac{9x^{2}-9x}{9}=\frac{9}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\left(-\frac{9}{9}\right)x=\frac{9}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{9}{9}
-9 ni 9 ga bo'lish.
x^{2}-x=1
9 ni 9 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
1 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Qisqartirish.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}