x uchun yechish (complex solution)
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
A\neq -3i\text{ and }A\neq 3i
x uchun yechish
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
A uchun yechish (complex solution)
A=\frac{\sqrt{3\sqrt{x^{2}-24x+72}-3x}}{2}
A=-\frac{\sqrt{3\sqrt{x^{2}-24x+72}-3x}}{2}
A=-\frac{\sqrt{-3\sqrt{x^{2}-24x+72}-3x}}{2}
A=\frac{\sqrt{-3\sqrt{x^{2}-24x+72}-3x}}{2}
A uchun yechish
A=-\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}
A=\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}\text{, }x\leq 3
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x\left(A-3i\right)\left(A+3i\right)+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Tenglamaning ikkala tarafini \left(A-3i\right)\left(A+3i\right) ga ko'paytirish.
\left(3xA-9ix\right)\left(A+3i\right)+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
3x ga A-3i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3xA^{2}+27x+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
3xA-9ix ga A+3i ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
A-3i ga A+3i ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A-3i\right)\left(A+3i\right)
A^{2}+9 ga 9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3xA^{2}+27x+A^{4}=9A^{2}+81+\left(-A^{3}+3iA^{2}\right)\left(A+3i\right)
-A^{2} ga A-3i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
-A^{3}+3iA^{2} ga A+3i ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3xA^{2}+27x+A^{4}=81-A^{4}
0 ni olish uchun 9A^{2} va -9A^{2} ni birlashtirish.
3xA^{2}+27x=81-A^{4}-A^{4}
Ikkala tarafdan A^{4} ni ayirish.
3xA^{2}+27x=81-2A^{4}
-2A^{4} ni olish uchun -A^{4} va -A^{4} ni birlashtirish.
\left(3A^{2}+27\right)x=81-2A^{4}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Ikki tarafini 3A^{2}+27 ga bo‘ling.
x=\frac{81-2A^{4}}{3A^{2}+27}
3A^{2}+27 ga bo'lish 3A^{2}+27 ga ko'paytirishni bekor qiladi.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
81-2A^{4} ni 3A^{2}+27 ga bo'lish.
3x\left(A^{2}+9\right)+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Tenglamaning ikkala tarafini A^{2}+9 ga ko'paytirish.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
3x ga A^{2}+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
A^{2}+9 ga 9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
-A^{2} ga A^{2}+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3xA^{2}+27x+A^{4}=81-A^{4}
0 ni olish uchun 9A^{2} va -9A^{2} ni birlashtirish.
3xA^{2}+27x=81-A^{4}-A^{4}
Ikkala tarafdan A^{4} ni ayirish.
3xA^{2}+27x=81-2A^{4}
-2A^{4} ni olish uchun -A^{4} va -A^{4} ni birlashtirish.
\left(3A^{2}+27\right)x=81-2A^{4}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Ikki tarafini 3A^{2}+27 ga bo‘ling.
x=\frac{81-2A^{4}}{3A^{2}+27}
3A^{2}+27 ga bo'lish 3A^{2}+27 ga ko'paytirishni bekor qiladi.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
81-2A^{4} ni 3A^{2}+27 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}