n uchun yechish
n = \frac{\sqrt{481} + 121}{2} \approx 71,4658561
n = \frac{121 - \sqrt{481}}{2} \approx 49,5341439
Baham ko'rish
Klipbordga nusxa olish
3n^{2}-363n+10620=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-363\right)±\sqrt{\left(-363\right)^{2}-4\times 3\times 10620}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -363 ni b va 10620 ni c bilan almashtiring.
n=\frac{-\left(-363\right)±\sqrt{131769-4\times 3\times 10620}}{2\times 3}
-363 kvadratini chiqarish.
n=\frac{-\left(-363\right)±\sqrt{131769-12\times 10620}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
n=\frac{-\left(-363\right)±\sqrt{131769-127440}}{2\times 3}
-12 ni 10620 marotabaga ko'paytirish.
n=\frac{-\left(-363\right)±\sqrt{4329}}{2\times 3}
131769 ni -127440 ga qo'shish.
n=\frac{-\left(-363\right)±3\sqrt{481}}{2\times 3}
4329 ning kvadrat ildizini chiqarish.
n=\frac{363±3\sqrt{481}}{2\times 3}
-363 ning teskarisi 363 ga teng.
n=\frac{363±3\sqrt{481}}{6}
2 ni 3 marotabaga ko'paytirish.
n=\frac{3\sqrt{481}+363}{6}
n=\frac{363±3\sqrt{481}}{6} tenglamasini yeching, bunda ± musbat. 363 ni 3\sqrt{481} ga qo'shish.
n=\frac{\sqrt{481}+121}{2}
363+3\sqrt{481} ni 6 ga bo'lish.
n=\frac{363-3\sqrt{481}}{6}
n=\frac{363±3\sqrt{481}}{6} tenglamasini yeching, bunda ± manfiy. 363 dan 3\sqrt{481} ni ayirish.
n=\frac{121-\sqrt{481}}{2}
363-3\sqrt{481} ni 6 ga bo'lish.
n=\frac{\sqrt{481}+121}{2} n=\frac{121-\sqrt{481}}{2}
Tenglama yechildi.
3n^{2}-363n+10620=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3n^{2}-363n+10620-10620=-10620
Tenglamaning ikkala tarafidan 10620 ni ayirish.
3n^{2}-363n=-10620
O‘zidan 10620 ayirilsa 0 qoladi.
\frac{3n^{2}-363n}{3}=-\frac{10620}{3}
Ikki tarafini 3 ga bo‘ling.
n^{2}+\left(-\frac{363}{3}\right)n=-\frac{10620}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
n^{2}-121n=-\frac{10620}{3}
-363 ni 3 ga bo'lish.
n^{2}-121n=-3540
-10620 ni 3 ga bo'lish.
n^{2}-121n+\left(-\frac{121}{2}\right)^{2}=-3540+\left(-\frac{121}{2}\right)^{2}
-121 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{121}{2} olish uchun. Keyin, -\frac{121}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-121n+\frac{14641}{4}=-3540+\frac{14641}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{121}{2} kvadratini chiqarish.
n^{2}-121n+\frac{14641}{4}=\frac{481}{4}
-3540 ni \frac{14641}{4} ga qo'shish.
\left(n-\frac{121}{2}\right)^{2}=\frac{481}{4}
n^{2}-121n+\frac{14641}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{121}{2}\right)^{2}}=\sqrt{\frac{481}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{121}{2}=\frac{\sqrt{481}}{2} n-\frac{121}{2}=-\frac{\sqrt{481}}{2}
Qisqartirish.
n=\frac{\sqrt{481}+121}{2} n=\frac{121-\sqrt{481}}{2}
\frac{121}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}