Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3n^{2}-9n=0
Ikkala tarafdan 9n ni ayirish.
n\left(3n-9\right)=0
n omili.
n=0 n=3
Tenglamani yechish uchun n=0 va 3n-9=0 ni yeching.
3n^{2}-9n=0
Ikkala tarafdan 9n ni ayirish.
n=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -9 ni b va 0 ni c bilan almashtiring.
n=\frac{-\left(-9\right)±9}{2\times 3}
\left(-9\right)^{2} ning kvadrat ildizini chiqarish.
n=\frac{9±9}{2\times 3}
-9 ning teskarisi 9 ga teng.
n=\frac{9±9}{6}
2 ni 3 marotabaga ko'paytirish.
n=\frac{18}{6}
n=\frac{9±9}{6} tenglamasini yeching, bunda ± musbat. 9 ni 9 ga qo'shish.
n=3
18 ni 6 ga bo'lish.
n=\frac{0}{6}
n=\frac{9±9}{6} tenglamasini yeching, bunda ± manfiy. 9 dan 9 ni ayirish.
n=0
0 ni 6 ga bo'lish.
n=3 n=0
Tenglama yechildi.
3n^{2}-9n=0
Ikkala tarafdan 9n ni ayirish.
\frac{3n^{2}-9n}{3}=\frac{0}{3}
Ikki tarafini 3 ga bo‘ling.
n^{2}+\left(-\frac{9}{3}\right)n=\frac{0}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
n^{2}-3n=\frac{0}{3}
-9 ni 3 ga bo'lish.
n^{2}-3n=0
0 ni 3 ga bo'lish.
n^{2}-3n+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-3n+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(n-\frac{3}{2}\right)^{2}=\frac{9}{4}
n^{2}-3n+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{3}{2}=\frac{3}{2} n-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
n=3 n=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.