Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3n^{2}+6n-13=-5
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3n^{2}+6n-13-\left(-5\right)=-5-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
3n^{2}+6n-13-\left(-5\right)=0
O‘zidan -5 ayirilsa 0 qoladi.
3n^{2}+6n-8=0
-13 dan -5 ni ayirish.
n=\frac{-6±\sqrt{6^{2}-4\times 3\left(-8\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 6 ni b va -8 ni c bilan almashtiring.
n=\frac{-6±\sqrt{36-4\times 3\left(-8\right)}}{2\times 3}
6 kvadratini chiqarish.
n=\frac{-6±\sqrt{36-12\left(-8\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
n=\frac{-6±\sqrt{36+96}}{2\times 3}
-12 ni -8 marotabaga ko'paytirish.
n=\frac{-6±\sqrt{132}}{2\times 3}
36 ni 96 ga qo'shish.
n=\frac{-6±2\sqrt{33}}{2\times 3}
132 ning kvadrat ildizini chiqarish.
n=\frac{-6±2\sqrt{33}}{6}
2 ni 3 marotabaga ko'paytirish.
n=\frac{2\sqrt{33}-6}{6}
n=\frac{-6±2\sqrt{33}}{6} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{33} ga qo'shish.
n=\frac{\sqrt{33}}{3}-1
-6+2\sqrt{33} ni 6 ga bo'lish.
n=\frac{-2\sqrt{33}-6}{6}
n=\frac{-6±2\sqrt{33}}{6} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{33} ni ayirish.
n=-\frac{\sqrt{33}}{3}-1
-6-2\sqrt{33} ni 6 ga bo'lish.
n=\frac{\sqrt{33}}{3}-1 n=-\frac{\sqrt{33}}{3}-1
Tenglama yechildi.
3n^{2}+6n-13=-5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3n^{2}+6n-13-\left(-13\right)=-5-\left(-13\right)
13 ni tenglamaning ikkala tarafiga qo'shish.
3n^{2}+6n=-5-\left(-13\right)
O‘zidan -13 ayirilsa 0 qoladi.
3n^{2}+6n=8
-5 dan -13 ni ayirish.
\frac{3n^{2}+6n}{3}=\frac{8}{3}
Ikki tarafini 3 ga bo‘ling.
n^{2}+\frac{6}{3}n=\frac{8}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
n^{2}+2n=\frac{8}{3}
6 ni 3 ga bo'lish.
n^{2}+2n+1^{2}=\frac{8}{3}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+2n+1=\frac{8}{3}+1
1 kvadratini chiqarish.
n^{2}+2n+1=\frac{11}{3}
\frac{8}{3} ni 1 ga qo'shish.
\left(n+1\right)^{2}=\frac{11}{3}
n^{2}+2n+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+1\right)^{2}}=\sqrt{\frac{11}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+1=\frac{\sqrt{33}}{3} n+1=-\frac{\sqrt{33}}{3}
Qisqartirish.
n=\frac{\sqrt{33}}{3}-1 n=-\frac{\sqrt{33}}{3}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.