n uchun yechish
n=\frac{\sqrt{582}}{3}-8\approx 0,041558721
n=-\frac{\sqrt{582}}{3}-8\approx -16,041558721
Baham ko'rish
Klipbordga nusxa olish
3n^{2}+48n-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-48±\sqrt{48^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 48 ni b va -2 ni c bilan almashtiring.
n=\frac{-48±\sqrt{2304-4\times 3\left(-2\right)}}{2\times 3}
48 kvadratini chiqarish.
n=\frac{-48±\sqrt{2304-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
n=\frac{-48±\sqrt{2304+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
n=\frac{-48±\sqrt{2328}}{2\times 3}
2304 ni 24 ga qo'shish.
n=\frac{-48±2\sqrt{582}}{2\times 3}
2328 ning kvadrat ildizini chiqarish.
n=\frac{-48±2\sqrt{582}}{6}
2 ni 3 marotabaga ko'paytirish.
n=\frac{2\sqrt{582}-48}{6}
n=\frac{-48±2\sqrt{582}}{6} tenglamasini yeching, bunda ± musbat. -48 ni 2\sqrt{582} ga qo'shish.
n=\frac{\sqrt{582}}{3}-8
-48+2\sqrt{582} ni 6 ga bo'lish.
n=\frac{-2\sqrt{582}-48}{6}
n=\frac{-48±2\sqrt{582}}{6} tenglamasini yeching, bunda ± manfiy. -48 dan 2\sqrt{582} ni ayirish.
n=-\frac{\sqrt{582}}{3}-8
-48-2\sqrt{582} ni 6 ga bo'lish.
n=\frac{\sqrt{582}}{3}-8 n=-\frac{\sqrt{582}}{3}-8
Tenglama yechildi.
3n^{2}+48n-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3n^{2}+48n-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
3n^{2}+48n=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
3n^{2}+48n=2
0 dan -2 ni ayirish.
\frac{3n^{2}+48n}{3}=\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
n^{2}+\frac{48}{3}n=\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
n^{2}+16n=\frac{2}{3}
48 ni 3 ga bo'lish.
n^{2}+16n+8^{2}=\frac{2}{3}+8^{2}
16 ni bo‘lish, x shartining koeffitsienti, 2 ga 8 olish uchun. Keyin, 8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+16n+64=\frac{2}{3}+64
8 kvadratini chiqarish.
n^{2}+16n+64=\frac{194}{3}
\frac{2}{3} ni 64 ga qo'shish.
\left(n+8\right)^{2}=\frac{194}{3}
n^{2}+16n+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+8\right)^{2}}=\sqrt{\frac{194}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+8=\frac{\sqrt{582}}{3} n+8=-\frac{\sqrt{582}}{3}
Qisqartirish.
n=\frac{\sqrt{582}}{3}-8 n=-\frac{\sqrt{582}}{3}-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}