Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3n^{2}+47n-232=5
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3n^{2}+47n-232-5=5-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
3n^{2}+47n-232-5=0
O‘zidan 5 ayirilsa 0 qoladi.
3n^{2}+47n-237=0
-232 dan 5 ni ayirish.
n=\frac{-47±\sqrt{47^{2}-4\times 3\left(-237\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 47 ni b va -237 ni c bilan almashtiring.
n=\frac{-47±\sqrt{2209-4\times 3\left(-237\right)}}{2\times 3}
47 kvadratini chiqarish.
n=\frac{-47±\sqrt{2209-12\left(-237\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
n=\frac{-47±\sqrt{2209+2844}}{2\times 3}
-12 ni -237 marotabaga ko'paytirish.
n=\frac{-47±\sqrt{5053}}{2\times 3}
2209 ni 2844 ga qo'shish.
n=\frac{-47±\sqrt{5053}}{6}
2 ni 3 marotabaga ko'paytirish.
n=\frac{\sqrt{5053}-47}{6}
n=\frac{-47±\sqrt{5053}}{6} tenglamasini yeching, bunda ± musbat. -47 ni \sqrt{5053} ga qo'shish.
n=\frac{-\sqrt{5053}-47}{6}
n=\frac{-47±\sqrt{5053}}{6} tenglamasini yeching, bunda ± manfiy. -47 dan \sqrt{5053} ni ayirish.
n=\frac{\sqrt{5053}-47}{6} n=\frac{-\sqrt{5053}-47}{6}
Tenglama yechildi.
3n^{2}+47n-232=5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3n^{2}+47n-232-\left(-232\right)=5-\left(-232\right)
232 ni tenglamaning ikkala tarafiga qo'shish.
3n^{2}+47n=5-\left(-232\right)
O‘zidan -232 ayirilsa 0 qoladi.
3n^{2}+47n=237
5 dan -232 ni ayirish.
\frac{3n^{2}+47n}{3}=\frac{237}{3}
Ikki tarafini 3 ga bo‘ling.
n^{2}+\frac{47}{3}n=\frac{237}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
n^{2}+\frac{47}{3}n=79
237 ni 3 ga bo'lish.
n^{2}+\frac{47}{3}n+\left(\frac{47}{6}\right)^{2}=79+\left(\frac{47}{6}\right)^{2}
\frac{47}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{47}{6} olish uchun. Keyin, \frac{47}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+\frac{47}{3}n+\frac{2209}{36}=79+\frac{2209}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{47}{6} kvadratini chiqarish.
n^{2}+\frac{47}{3}n+\frac{2209}{36}=\frac{5053}{36}
79 ni \frac{2209}{36} ga qo'shish.
\left(n+\frac{47}{6}\right)^{2}=\frac{5053}{36}
n^{2}+\frac{47}{3}n+\frac{2209}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{47}{6}\right)^{2}}=\sqrt{\frac{5053}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{47}{6}=\frac{\sqrt{5053}}{6} n+\frac{47}{6}=-\frac{\sqrt{5053}}{6}
Qisqartirish.
n=\frac{\sqrt{5053}-47}{6} n=\frac{-\sqrt{5053}-47}{6}
Tenglamaning ikkala tarafidan \frac{47}{6} ni ayirish.