m uchun yechish
m = -\frac{9}{2} = -4\frac{1}{2} = -4,5
m=0
Viktorina
Polynomial
3 m ( 2 m + 9 ) = 0
Baham ko'rish
Klipbordga nusxa olish
6m^{2}+27m=0
3m ga 2m+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
m\left(6m+27\right)=0
m omili.
m=0 m=-\frac{9}{2}
Tenglamani yechish uchun m=0 va 6m+27=0 ni yeching.
6m^{2}+27m=0
3m ga 2m+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
m=\frac{-27±\sqrt{27^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 27 ni b va 0 ni c bilan almashtiring.
m=\frac{-27±27}{2\times 6}
27^{2} ning kvadrat ildizini chiqarish.
m=\frac{-27±27}{12}
2 ni 6 marotabaga ko'paytirish.
m=\frac{0}{12}
m=\frac{-27±27}{12} tenglamasini yeching, bunda ± musbat. -27 ni 27 ga qo'shish.
m=0
0 ni 12 ga bo'lish.
m=-\frac{54}{12}
m=\frac{-27±27}{12} tenglamasini yeching, bunda ± manfiy. -27 dan 27 ni ayirish.
m=-\frac{9}{2}
\frac{-54}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
m=0 m=-\frac{9}{2}
Tenglama yechildi.
6m^{2}+27m=0
3m ga 2m+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{6m^{2}+27m}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
m^{2}+\frac{27}{6}m=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
m^{2}+\frac{9}{2}m=\frac{0}{6}
\frac{27}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
m^{2}+\frac{9}{2}m=0
0 ni 6 ga bo'lish.
m^{2}+\frac{9}{2}m+\left(\frac{9}{4}\right)^{2}=\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}+\frac{9}{2}m+\frac{81}{16}=\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
\left(m+\frac{9}{4}\right)^{2}=\frac{81}{16}
m^{2}+\frac{9}{2}m+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m+\frac{9}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m+\frac{9}{4}=\frac{9}{4} m+\frac{9}{4}=-\frac{9}{4}
Qisqartirish.
m=0 m=-\frac{9}{2}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}