m uchun yechish
m=\frac{2\sqrt{6}}{9}-\frac{2}{3}\approx -0,122335613
m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}\approx -1,210997721
Baham ko'rish
Klipbordga nusxa olish
3m^{2}+4m+1=\frac{5}{9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3m^{2}+4m+1-\frac{5}{9}=\frac{5}{9}-\frac{5}{9}
Tenglamaning ikkala tarafidan \frac{5}{9} ni ayirish.
3m^{2}+4m+1-\frac{5}{9}=0
O‘zidan \frac{5}{9} ayirilsa 0 qoladi.
3m^{2}+4m+\frac{4}{9}=0
1 dan \frac{5}{9} ni ayirish.
m=\frac{-4±\sqrt{4^{2}-4\times 3\times \frac{4}{9}}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 4 ni b va \frac{4}{9} ni c bilan almashtiring.
m=\frac{-4±\sqrt{16-4\times 3\times \frac{4}{9}}}{2\times 3}
4 kvadratini chiqarish.
m=\frac{-4±\sqrt{16-12\times \frac{4}{9}}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
m=\frac{-4±\sqrt{16-\frac{16}{3}}}{2\times 3}
-12 ni \frac{4}{9} marotabaga ko'paytirish.
m=\frac{-4±\sqrt{\frac{32}{3}}}{2\times 3}
16 ni -\frac{16}{3} ga qo'shish.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{2\times 3}
\frac{32}{3} ning kvadrat ildizini chiqarish.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{6}
2 ni 3 marotabaga ko'paytirish.
m=\frac{\frac{4\sqrt{6}}{3}-4}{6}
m=\frac{-4±\frac{4\sqrt{6}}{3}}{6} tenglamasini yeching, bunda ± musbat. -4 ni \frac{4\sqrt{6}}{3} ga qo'shish.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3}
-4+\frac{4\sqrt{6}}{3} ni 6 ga bo'lish.
m=\frac{-\frac{4\sqrt{6}}{3}-4}{6}
m=\frac{-4±\frac{4\sqrt{6}}{3}}{6} tenglamasini yeching, bunda ± manfiy. -4 dan \frac{4\sqrt{6}}{3} ni ayirish.
m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
-4-\frac{4\sqrt{6}}{3} ni 6 ga bo'lish.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3} m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Tenglama yechildi.
3m^{2}+4m+1=\frac{5}{9}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3m^{2}+4m+1-1=\frac{5}{9}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
3m^{2}+4m=\frac{5}{9}-1
O‘zidan 1 ayirilsa 0 qoladi.
3m^{2}+4m=-\frac{4}{9}
\frac{5}{9} dan 1 ni ayirish.
\frac{3m^{2}+4m}{3}=-\frac{\frac{4}{9}}{3}
Ikki tarafini 3 ga bo‘ling.
m^{2}+\frac{4}{3}m=-\frac{\frac{4}{9}}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
m^{2}+\frac{4}{3}m=-\frac{4}{27}
-\frac{4}{9} ni 3 ga bo'lish.
m^{2}+\frac{4}{3}m+\left(\frac{2}{3}\right)^{2}=-\frac{4}{27}+\left(\frac{2}{3}\right)^{2}
\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{3} olish uchun. Keyin, \frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}+\frac{4}{3}m+\frac{4}{9}=-\frac{4}{27}+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
m^{2}+\frac{4}{3}m+\frac{4}{9}=\frac{8}{27}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{27} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(m+\frac{2}{3}\right)^{2}=\frac{8}{27}
m^{2}+\frac{4}{3}m+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m+\frac{2}{3}\right)^{2}}=\sqrt{\frac{8}{27}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m+\frac{2}{3}=\frac{2\sqrt{6}}{9} m+\frac{2}{3}=-\frac{2\sqrt{6}}{9}
Qisqartirish.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3} m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Tenglamaning ikkala tarafidan \frac{2}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}