Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6k^{2}-3k=2
3k ga 2k-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6k^{2}-3k-2=0
Ikkala tarafdan 2 ni ayirish.
k=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-2\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -3 ni b va -2 ni c bilan almashtiring.
k=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-2\right)}}{2\times 6}
-3 kvadratini chiqarish.
k=\frac{-\left(-3\right)±\sqrt{9-24\left(-2\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
k=\frac{-\left(-3\right)±\sqrt{9+48}}{2\times 6}
-24 ni -2 marotabaga ko'paytirish.
k=\frac{-\left(-3\right)±\sqrt{57}}{2\times 6}
9 ni 48 ga qo'shish.
k=\frac{3±\sqrt{57}}{2\times 6}
-3 ning teskarisi 3 ga teng.
k=\frac{3±\sqrt{57}}{12}
2 ni 6 marotabaga ko'paytirish.
k=\frac{\sqrt{57}+3}{12}
k=\frac{3±\sqrt{57}}{12} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{57} ga qo'shish.
k=\frac{\sqrt{57}}{12}+\frac{1}{4}
3+\sqrt{57} ni 12 ga bo'lish.
k=\frac{3-\sqrt{57}}{12}
k=\frac{3±\sqrt{57}}{12} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{57} ni ayirish.
k=-\frac{\sqrt{57}}{12}+\frac{1}{4}
3-\sqrt{57} ni 12 ga bo'lish.
k=\frac{\sqrt{57}}{12}+\frac{1}{4} k=-\frac{\sqrt{57}}{12}+\frac{1}{4}
Tenglama yechildi.
6k^{2}-3k=2
3k ga 2k-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{6k^{2}-3k}{6}=\frac{2}{6}
Ikki tarafini 6 ga bo‘ling.
k^{2}+\left(-\frac{3}{6}\right)k=\frac{2}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
k^{2}-\frac{1}{2}k=\frac{2}{6}
\frac{-3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
k^{2}-\frac{1}{2}k=\frac{1}{3}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
k^{2}-\frac{1}{2}k+\left(-\frac{1}{4}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}-\frac{1}{2}k+\frac{1}{16}=\frac{1}{3}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
k^{2}-\frac{1}{2}k+\frac{1}{16}=\frac{19}{48}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{3} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(k-\frac{1}{4}\right)^{2}=\frac{19}{48}
k^{2}-\frac{1}{2}k+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k-\frac{1}{4}\right)^{2}}=\sqrt{\frac{19}{48}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k-\frac{1}{4}=\frac{\sqrt{57}}{12} k-\frac{1}{4}=-\frac{\sqrt{57}}{12}
Qisqartirish.
k=\frac{\sqrt{57}}{12}+\frac{1}{4} k=-\frac{\sqrt{57}}{12}+\frac{1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.