k uchun yechish
k=1
k=-1
Baham ko'rish
Klipbordga nusxa olish
3k^{2}-8+5=0
5 ni ikki tarafga qo’shing.
3k^{2}-3=0
-3 olish uchun -8 va 5'ni qo'shing.
k^{2}-1=0
Ikki tarafini 3 ga bo‘ling.
\left(k-1\right)\left(k+1\right)=0
Hisoblang: k^{2}-1. k^{2}-1 ni k^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=1 k=-1
Tenglamani yechish uchun k-1=0 va k+1=0 ni yeching.
3k^{2}=-5+8
8 ni ikki tarafga qo’shing.
3k^{2}=3
3 olish uchun -5 va 8'ni qo'shing.
k^{2}=\frac{3}{3}
Ikki tarafini 3 ga bo‘ling.
k^{2}=1
1 ni olish uchun 3 ni 3 ga bo‘ling.
k=1 k=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
3k^{2}-8+5=0
5 ni ikki tarafga qo’shing.
3k^{2}-3=0
-3 olish uchun -8 va 5'ni qo'shing.
k=\frac{0±\sqrt{0^{2}-4\times 3\left(-3\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 0 ni b va -3 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\times 3\left(-3\right)}}{2\times 3}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{-12\left(-3\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
k=\frac{0±\sqrt{36}}{2\times 3}
-12 ni -3 marotabaga ko'paytirish.
k=\frac{0±6}{2\times 3}
36 ning kvadrat ildizini chiqarish.
k=\frac{0±6}{6}
2 ni 3 marotabaga ko'paytirish.
k=1
k=\frac{0±6}{6} tenglamasini yeching, bunda ± musbat. 6 ni 6 ga bo'lish.
k=-1
k=\frac{0±6}{6} tenglamasini yeching, bunda ± manfiy. -6 ni 6 ga bo'lish.
k=1 k=-1
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}