Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3k^{2}-8+5=0
5 ni ikki tarafga qo’shing.
3k^{2}-3=0
-3 olish uchun -8 va 5'ni qo'shing.
k^{2}-1=0
Ikki tarafini 3 ga bo‘ling.
\left(k-1\right)\left(k+1\right)=0
Hisoblang: k^{2}-1. k^{2}-1 ni k^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=1 k=-1
Tenglamani yechish uchun k-1=0 va k+1=0 ni yeching.
3k^{2}=-5+8
8 ni ikki tarafga qo’shing.
3k^{2}=3
3 olish uchun -5 va 8'ni qo'shing.
k^{2}=\frac{3}{3}
Ikki tarafini 3 ga bo‘ling.
k^{2}=1
1 ni olish uchun 3 ni 3 ga bo‘ling.
k=1 k=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
3k^{2}-8+5=0
5 ni ikki tarafga qo’shing.
3k^{2}-3=0
-3 olish uchun -8 va 5'ni qo'shing.
k=\frac{0±\sqrt{0^{2}-4\times 3\left(-3\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 0 ni b va -3 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\times 3\left(-3\right)}}{2\times 3}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{-12\left(-3\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
k=\frac{0±\sqrt{36}}{2\times 3}
-12 ni -3 marotabaga ko'paytirish.
k=\frac{0±6}{2\times 3}
36 ning kvadrat ildizini chiqarish.
k=\frac{0±6}{6}
2 ni 3 marotabaga ko'paytirish.
k=1
k=\frac{0±6}{6} tenglamasini yeching, bunda ± musbat. 6 ni 6 ga bo'lish.
k=-1
k=\frac{0±6}{6} tenglamasini yeching, bunda ± manfiy. -6 ni 6 ga bo'lish.
k=1 k=-1
Tenglama yechildi.