Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3d^{2}-3d-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
d=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
d=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-2\right)}}{2\times 3}
-3 kvadratini chiqarish.
d=\frac{-\left(-3\right)±\sqrt{9-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
d=\frac{-\left(-3\right)±\sqrt{9+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
d=\frac{-\left(-3\right)±\sqrt{33}}{2\times 3}
9 ni 24 ga qo'shish.
d=\frac{3±\sqrt{33}}{2\times 3}
-3 ning teskarisi 3 ga teng.
d=\frac{3±\sqrt{33}}{6}
2 ni 3 marotabaga ko'paytirish.
d=\frac{\sqrt{33}+3}{6}
d=\frac{3±\sqrt{33}}{6} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{33} ga qo'shish.
d=\frac{\sqrt{33}}{6}+\frac{1}{2}
3+\sqrt{33} ni 6 ga bo'lish.
d=\frac{3-\sqrt{33}}{6}
d=\frac{3±\sqrt{33}}{6} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{33} ni ayirish.
d=-\frac{\sqrt{33}}{6}+\frac{1}{2}
3-\sqrt{33} ni 6 ga bo'lish.
3d^{2}-3d-2=3\left(d-\left(\frac{\sqrt{33}}{6}+\frac{1}{2}\right)\right)\left(d-\left(-\frac{\sqrt{33}}{6}+\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1}{2}+\frac{\sqrt{33}}{6} ga va x_{2} uchun \frac{1}{2}-\frac{\sqrt{33}}{6} ga bo‘ling.