Omil
\left(b-10\right)\left(3b+8\right)
Baholash
\left(b-10\right)\left(3b+8\right)
Baham ko'rish
Klipbordga nusxa olish
p+q=-22 pq=3\left(-80\right)=-240
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 3b^{2}+pb+qb-80 sifatida qayta yozilishi kerak. p va q ni topish uchun yechiladigan tizimni sozlang.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
pq manfiy boʻlganda, p va q da qarama-qarshi belgilar bor. p+q manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -240-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Har bir juftlik yigʻindisini hisoblang.
p=-30 q=8
Yechim – -22 yigʻindisini beruvchi juftlik.
\left(3b^{2}-30b\right)+\left(8b-80\right)
3b^{2}-22b-80 ni \left(3b^{2}-30b\right)+\left(8b-80\right) sifatida qaytadan yozish.
3b\left(b-10\right)+8\left(b-10\right)
Birinchi guruhda 3b ni va ikkinchi guruhda 8 ni faktordan chiqaring.
\left(b-10\right)\left(3b+8\right)
Distributiv funktsiyasidan foydalangan holda b-10 umumiy terminini chiqaring.
3b^{2}-22b-80=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
b=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\left(-80\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-\left(-22\right)±\sqrt{484-4\times 3\left(-80\right)}}{2\times 3}
-22 kvadratini chiqarish.
b=\frac{-\left(-22\right)±\sqrt{484-12\left(-80\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
b=\frac{-\left(-22\right)±\sqrt{484+960}}{2\times 3}
-12 ni -80 marotabaga ko'paytirish.
b=\frac{-\left(-22\right)±\sqrt{1444}}{2\times 3}
484 ni 960 ga qo'shish.
b=\frac{-\left(-22\right)±38}{2\times 3}
1444 ning kvadrat ildizini chiqarish.
b=\frac{22±38}{2\times 3}
-22 ning teskarisi 22 ga teng.
b=\frac{22±38}{6}
2 ni 3 marotabaga ko'paytirish.
b=\frac{60}{6}
b=\frac{22±38}{6} tenglamasini yeching, bunda ± musbat. 22 ni 38 ga qo'shish.
b=10
60 ni 6 ga bo'lish.
b=-\frac{16}{6}
b=\frac{22±38}{6} tenglamasini yeching, bunda ± manfiy. 22 dan 38 ni ayirish.
b=-\frac{8}{3}
\frac{-16}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
3b^{2}-22b-80=3\left(b-10\right)\left(b-\left(-\frac{8}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 10 ga va x_{2} uchun -\frac{8}{3} ga bo‘ling.
3b^{2}-22b-80=3\left(b-10\right)\left(b+\frac{8}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
3b^{2}-22b-80=3\left(b-10\right)\times \frac{3b+8}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni b ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
3b^{2}-22b-80=\left(b-10\right)\left(3b+8\right)
3 va 3 ichida eng katta umumiy 3 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}