Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3b^{2}+15b+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
b=\frac{-15±\sqrt{15^{2}-4\times 3\times 2}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-15±\sqrt{225-4\times 3\times 2}}{2\times 3}
15 kvadratini chiqarish.
b=\frac{-15±\sqrt{225-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
b=\frac{-15±\sqrt{225-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
b=\frac{-15±\sqrt{201}}{2\times 3}
225 ni -24 ga qo'shish.
b=\frac{-15±\sqrt{201}}{6}
2 ni 3 marotabaga ko'paytirish.
b=\frac{\sqrt{201}-15}{6}
b=\frac{-15±\sqrt{201}}{6} tenglamasini yeching, bunda ± musbat. -15 ni \sqrt{201} ga qo'shish.
b=\frac{\sqrt{201}}{6}-\frac{5}{2}
-15+\sqrt{201} ni 6 ga bo'lish.
b=\frac{-\sqrt{201}-15}{6}
b=\frac{-15±\sqrt{201}}{6} tenglamasini yeching, bunda ± manfiy. -15 dan \sqrt{201} ni ayirish.
b=-\frac{\sqrt{201}}{6}-\frac{5}{2}
-15-\sqrt{201} ni 6 ga bo'lish.
3b^{2}+15b+2=3\left(b-\left(\frac{\sqrt{201}}{6}-\frac{5}{2}\right)\right)\left(b-\left(-\frac{\sqrt{201}}{6}-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{5}{2}+\frac{\sqrt{201}}{6} ga va x_{2} uchun -\frac{5}{2}-\frac{\sqrt{201}}{6} ga bo‘ling.