a uchun yechish
a=-3
a=0
Baham ko'rish
Klipbordga nusxa olish
3a+a^{2}+1-1=0
Ikkala tarafdan 1 ni ayirish.
3a+a^{2}=0
0 olish uchun 1 dan 1 ni ayirish.
a\left(3+a\right)=0
a omili.
a=0 a=-3
Tenglamani yechish uchun a=0 va 3+a=0 ni yeching.
a^{2}+3a+1=1
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a^{2}+3a+1-1=1-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
a^{2}+3a+1-1=0
O‘zidan 1 ayirilsa 0 qoladi.
a^{2}+3a=0
1 dan 1 ni ayirish.
a=\frac{-3±\sqrt{3^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va 0 ni c bilan almashtiring.
a=\frac{-3±3}{2}
3^{2} ning kvadrat ildizini chiqarish.
a=\frac{0}{2}
a=\frac{-3±3}{2} tenglamasini yeching, bunda ± musbat. -3 ni 3 ga qo'shish.
a=0
0 ni 2 ga bo'lish.
a=-\frac{6}{2}
a=\frac{-3±3}{2} tenglamasini yeching, bunda ± manfiy. -3 dan 3 ni ayirish.
a=-3
-6 ni 2 ga bo'lish.
a=0 a=-3
Tenglama yechildi.
3a+a^{2}+1-1=0
Ikkala tarafdan 1 ni ayirish.
3a+a^{2}=0
0 olish uchun 1 dan 1 ni ayirish.
a^{2}+3a=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
a^{2}+3a+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+3a+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
\left(a+\frac{3}{2}\right)^{2}=\frac{9}{4}
a^{2}+3a+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{3}{2}=\frac{3}{2} a+\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
a=0 a=-3
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}