Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-a^{2}-a+3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-1\right)±\sqrt{1+4\times 3}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
a=\frac{-\left(-1\right)±\sqrt{1+12}}{2\left(-1\right)}
4 ni 3 marotabaga ko'paytirish.
a=\frac{-\left(-1\right)±\sqrt{13}}{2\left(-1\right)}
1 ni 12 ga qo'shish.
a=\frac{1±\sqrt{13}}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
a=\frac{1±\sqrt{13}}{-2}
2 ni -1 marotabaga ko'paytirish.
a=\frac{\sqrt{13}+1}{-2}
a=\frac{1±\sqrt{13}}{-2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{13} ga qo'shish.
a=\frac{-\sqrt{13}-1}{2}
1+\sqrt{13} ni -2 ga bo'lish.
a=\frac{1-\sqrt{13}}{-2}
a=\frac{1±\sqrt{13}}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{13} ni ayirish.
a=\frac{\sqrt{13}-1}{2}
1-\sqrt{13} ni -2 ga bo'lish.
-a^{2}-a+3=-\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1-\sqrt{13}}{2} ga va x_{2} uchun \frac{-1+\sqrt{13}}{2} ga bo‘ling.