x uchun yechish
x=1
x=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
3-4x^{2}-5=-6x^{2}
Ikkala tarafdan 5 ni ayirish.
-2-4x^{2}=-6x^{2}
-2 olish uchun 3 dan 5 ni ayirish.
-2-4x^{2}+6x^{2}=0
6x^{2} ni ikki tarafga qo’shing.
-2+2x^{2}=0
2x^{2} ni olish uchun -4x^{2} va 6x^{2} ni birlashtirish.
-1+x^{2}=0
Ikki tarafini 2 ga bo‘ling.
\left(x-1\right)\left(x+1\right)=0
Hisoblang: -1+x^{2}. -1+x^{2} ni x^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
Tenglamani yechish uchun x-1=0 va x+1=0 ni yeching.
3-4x^{2}+6x^{2}=5
6x^{2} ni ikki tarafga qo’shing.
3+2x^{2}=5
2x^{2} ni olish uchun -4x^{2} va 6x^{2} ni birlashtirish.
2x^{2}=5-3
Ikkala tarafdan 3 ni ayirish.
2x^{2}=2
2 olish uchun 5 dan 3 ni ayirish.
x^{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=1
1 ni olish uchun 2 ni 2 ga bo‘ling.
x=1 x=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
3-4x^{2}-5=-6x^{2}
Ikkala tarafdan 5 ni ayirish.
-2-4x^{2}=-6x^{2}
-2 olish uchun 3 dan 5 ni ayirish.
-2-4x^{2}+6x^{2}=0
6x^{2} ni ikki tarafga qo’shing.
-2+2x^{2}=0
2x^{2} ni olish uchun -4x^{2} va 6x^{2} ni birlashtirish.
2x^{2}-2=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-2\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
x=\frac{0±4}{2\times 2}
16 ning kvadrat ildizini chiqarish.
x=\frac{0±4}{4}
2 ni 2 marotabaga ko'paytirish.
x=1
x=\frac{0±4}{4} tenglamasini yeching, bunda ± musbat. 4 ni 4 ga bo'lish.
x=-1
x=\frac{0±4}{4} tenglamasini yeching, bunda ± manfiy. -4 ni 4 ga bo'lish.
x=1 x=-1
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}