m uchun yechish
m=\frac{100000000000r^{2}\left(rw^{2}+2943\right)}{667}
r\neq 0
Baham ko'rish
Klipbordga nusxa olish
3\times 981r^{2}=667\times 10^{-11}m-w^{2}rr^{2}
Tenglamaning ikkala tarafini r^{2} ga ko'paytirish.
3\times 981r^{2}=667\times 10^{-11}m-w^{2}r^{3}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
2943r^{2}=667\times 10^{-11}m-w^{2}r^{3}
2943 hosil qilish uchun 3 va 981 ni ko'paytirish.
2943r^{2}=667\times \frac{1}{100000000000}m-w^{2}r^{3}
-11 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100000000000} ni qiymatni oling.
2943r^{2}=\frac{667}{100000000000}m-w^{2}r^{3}
\frac{667}{100000000000} hosil qilish uchun 667 va \frac{1}{100000000000} ni ko'paytirish.
\frac{667}{100000000000}m-w^{2}r^{3}=2943r^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{667}{100000000000}m=2943r^{2}+w^{2}r^{3}
w^{2}r^{3} ni ikki tarafga qo’shing.
\frac{\frac{667}{100000000000}m}{\frac{667}{100000000000}}=\frac{r^{2}\left(rw^{2}+2943\right)}{\frac{667}{100000000000}}
Tenglamaning ikki tarafini \frac{667}{100000000000} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
m=\frac{r^{2}\left(rw^{2}+2943\right)}{\frac{667}{100000000000}}
\frac{667}{100000000000} ga bo'lish \frac{667}{100000000000} ga ko'paytirishni bekor qiladi.
m=\frac{100000000000r^{2}\left(rw^{2}+2943\right)}{667}
\left(2943+w^{2}r\right)r^{2} ni \frac{667}{100000000000} ga bo'lish \left(2943+w^{2}r\right)r^{2} ga k'paytirish \frac{667}{100000000000} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}