Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Baham ko'rish

3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
\frac{7+2\sqrt{10}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{3\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}} ni yagona kasrga aylantiring.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Surat va maxrajdagi ikkala 3 ni qisqartiring.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
4\times \frac{7+2\sqrt{10}}{3} ni yagona kasrga aylantiring.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{4\left(7+2\sqrt{10}\right)}{3} ni \frac{7-2\sqrt{10}}{3} ga ko‘paytiring.
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 3\times 3 ning eng kichik umumiy karralisi 3\times 3. \frac{\left(2\sqrt{10}+7\right)^{2}}{3} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3} va \frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
\frac{7-2\sqrt{10}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}} ni yagona kasrga aylantiring.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{\left(-2\sqrt{10}+7\right)^{2}}{3}
Surat va maxrajdagi ikkala 3 ni qisqartiring.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\left(\sqrt{10}\right)^{2}-28\sqrt{10}+49}{3}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-2\sqrt{10}+7\right)^{2} kengaytirilishi uchun ishlating.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\times 10-28\sqrt{10}+49}{3}
\sqrt{10} kvadrati – 10.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{40-28\sqrt{10}+49}{3}
40 hosil qilish uchun 4 va 10 ni ko'paytirish.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
89 olish uchun 40 va 49'ni qo'shing.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(89-28\sqrt{10}\right)}{3\times 3}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3\times 3 va 3 ning eng kichik umumiy karralisi 3\times 3. \frac{89-28\sqrt{10}}{3} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{3\times 3}
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} va \frac{3\left(89-28\sqrt{10}\right)}{3\times 3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3\left(4\left(\sqrt{10}\right)^{2}+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2\sqrt{10}+7\right)^{2} kengaytirilishi uchun ishlating.
\frac{3\left(4\times 10+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
\sqrt{10} kvadrati – 10.
\frac{3\left(40+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
40 hosil qilish uchun 4 va 10 ni ko'paytirish.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
89 olish uchun 40 va 49'ni qo'shing.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{89-28\sqrt{10}}{3}
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{3\left(89-28\sqrt{10}\right)}{9}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 9 va 3 ning eng kichik umumiy karralisi 9. \frac{89-28\sqrt{10}}{3} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{9}
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9} va \frac{3\left(89-28\sqrt{10}\right)}{9} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}}{9}
3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{36+168\sqrt{10}}{9}
267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10} hisob-kitobini qiling.