Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3\times \left(\frac{-16k}{4k^{2}+1}\right)^{2}\left(4k^{2}+1\right)=32
Tenglamaning ikkala tarafini 4k^{2}+1 ga ko'paytirish.
3\times \frac{\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right)=32
\frac{-16k}{4k^{2}+1}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{3\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right)=32
3\times \frac{\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}} ni yagona kasrga aylantiring.
\frac{3\left(-16k\right)^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
\frac{3\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right) ni yagona kasrga aylantiring.
\frac{3\left(-16\right)^{2}k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
\left(-16k\right)^{2} ni kengaytirish.
\frac{3\times 256k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
2 daraja ko‘rsatkichini -16 ga hisoblang va 256 ni qiymatni oling.
\frac{768k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
768 hosil qilish uchun 3 va 256 ni ko'paytirish.
\frac{768k^{2}\left(4k^{2}+1\right)}{16\left(k^{2}\right)^{2}+8k^{2}+1}=32
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(4k^{2}+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{768k^{2}\left(4k^{2}+1\right)}{16k^{4}+8k^{2}+1}=32
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{768k^{2}\left(4k^{2}+1\right)}{16k^{4}+8k^{2}+1}-32=0
Ikkala tarafdan 32 ni ayirish.
\frac{3072k^{4}+768k^{2}}{16k^{4}+8k^{2}+1}-32=0
768k^{2} ga 4k^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}}-32=0
Faktor: 16k^{4}+8k^{2}+1.
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}}-\frac{32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 32 ni \frac{\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}} marotabaga ko'paytirish.
\frac{3072k^{4}+768k^{2}-32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}=0
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}} va \frac{32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3072k^{4}+768k^{2}-512k^{4}-256k^{2}-32}{\left(4k^{2}+1\right)^{2}}=0
3072k^{4}+768k^{2}-32\left(4k^{2}+1\right)^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{2560k^{4}+512k^{2}-32}{\left(4k^{2}+1\right)^{2}}=0
3072k^{4}+768k^{2}-512k^{4}-256k^{2}-32 kabi iboralarga o‘xshab birlashtiring.
2560k^{4}+512k^{2}-32=0
Tenglamaning ikkala tarafini \left(4k^{2}+1\right)^{2} ga ko'paytirish.
2560t^{2}+512t-32=0
k^{2} uchun t ni almashtiring.
t=\frac{-512±\sqrt{512^{2}-4\times 2560\left(-32\right)}}{2\times 2560}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 2560 ni, b uchun 512 ni va c uchun -32 ni ayiring.
t=\frac{-512±768}{5120}
Hisoblarni amalga oshiring.
t=\frac{1}{20} t=-\frac{1}{4}
t=\frac{-512±768}{5120} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
k=\frac{\sqrt{5}}{10} k=-\frac{\sqrt{5}}{10}
k=t^{2} boʻlganda, yechimlar musbat t uchun k=±\sqrt{t} hisoblanishi orqali olinadi.