k uchun yechish
k=\sqrt{3}x+\frac{4\sqrt{3}}{3x}
x\neq 0
x uchun yechish (complex solution)
x=\frac{\sqrt{3}\left(\sqrt{k^{2}-16}+k\right)}{6}
x=-\frac{\sqrt{3}\left(\sqrt{k^{2}-16}-k\right)}{6}
x uchun yechish
x=-\frac{\sqrt{3}\left(\sqrt{k^{2}-16}-k\right)}{6}
x=\frac{\sqrt{3}\left(\sqrt{k^{2}-16}+k\right)}{6}\text{, }|k|\geq 4
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-k\sqrt{3}x=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-k\sqrt{3}x=-4-3x^{2}
Ikkala tarafdan 3x^{2} ni ayirish.
\left(-\sqrt{3}x\right)k=-3x^{2}-4
Tenglama standart shaklda.
\frac{\left(-\sqrt{3}x\right)k}{-\sqrt{3}x}=\frac{-3x^{2}-4}{-\sqrt{3}x}
Ikki tarafini -\sqrt{3}x ga bo‘ling.
k=\frac{-3x^{2}-4}{-\sqrt{3}x}
-\sqrt{3}x ga bo'lish -\sqrt{3}x ga ko'paytirishni bekor qiladi.
k=\sqrt{3}x+\frac{4\sqrt{3}}{3x}
-4-3x^{2} ni -\sqrt{3}x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}