Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-6x+36=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\times 36}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -6 ni b va 36 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\times 36}}{2\times 3}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-12\times 36}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36-432}}{2\times 3}
-12 ni 36 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{-396}}{2\times 3}
36 ni -432 ga qo'shish.
x=\frac{-\left(-6\right)±6\sqrt{11}i}{2\times 3}
-396 ning kvadrat ildizini chiqarish.
x=\frac{6±6\sqrt{11}i}{2\times 3}
-6 ning teskarisi 6 ga teng.
x=\frac{6±6\sqrt{11}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{6+6\sqrt{11}i}{6}
x=\frac{6±6\sqrt{11}i}{6} tenglamasini yeching, bunda ± musbat. 6 ni 6i\sqrt{11} ga qo'shish.
x=1+\sqrt{11}i
6+6i\sqrt{11} ni 6 ga bo'lish.
x=\frac{-6\sqrt{11}i+6}{6}
x=\frac{6±6\sqrt{11}i}{6} tenglamasini yeching, bunda ± manfiy. 6 dan 6i\sqrt{11} ni ayirish.
x=-\sqrt{11}i+1
6-6i\sqrt{11} ni 6 ga bo'lish.
x=1+\sqrt{11}i x=-\sqrt{11}i+1
Tenglama yechildi.
3x^{2}-6x+36=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-6x+36-36=-36
Tenglamaning ikkala tarafidan 36 ni ayirish.
3x^{2}-6x=-36
O‘zidan 36 ayirilsa 0 qoladi.
\frac{3x^{2}-6x}{3}=-\frac{36}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{6}{3}\right)x=-\frac{36}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{36}{3}
-6 ni 3 ga bo'lish.
x^{2}-2x=-12
-36 ni 3 ga bo'lish.
x^{2}-2x+1=-12+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-11
-12 ni 1 ga qo'shish.
\left(x-1\right)^{2}=-11
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-11}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{11}i x-1=-\sqrt{11}i
Qisqartirish.
x=1+\sqrt{11}i x=-\sqrt{11}i+1
1 ni tenglamaning ikkala tarafiga qo'shish.