Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-6x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3}}{2\times 3}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{24}}{2\times 3}
36 ni -12 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{6}}{2\times 3}
24 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{6}}{2\times 3}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{6}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{6}+6}{6}
x=\frac{6±2\sqrt{6}}{6} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{6} ga qo'shish.
x=\frac{\sqrt{6}}{3}+1
6+2\sqrt{6} ni 6 ga bo'lish.
x=\frac{6-2\sqrt{6}}{6}
x=\frac{6±2\sqrt{6}}{6} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{6} ni ayirish.
x=-\frac{\sqrt{6}}{3}+1
6-2\sqrt{6} ni 6 ga bo'lish.
3x^{2}-6x+1=3\left(x-\left(\frac{\sqrt{6}}{3}+1\right)\right)\left(x-\left(-\frac{\sqrt{6}}{3}+1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1+\frac{\sqrt{6}}{3} ga va x_{2} uchun 1-\frac{\sqrt{6}}{3} ga bo‘ling.