x uchun yechish
x = \frac{\sqrt{703} + 25}{3} \approx 17,171382389
x=\frac{25-\sqrt{703}}{3}\approx -0,504715722
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-50x-26=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 3\left(-26\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -50 ni b va -26 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 3\left(-26\right)}}{2\times 3}
-50 kvadratini chiqarish.
x=\frac{-\left(-50\right)±\sqrt{2500-12\left(-26\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{2500+312}}{2\times 3}
-12 ni -26 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{2812}}{2\times 3}
2500 ni 312 ga qo'shish.
x=\frac{-\left(-50\right)±2\sqrt{703}}{2\times 3}
2812 ning kvadrat ildizini chiqarish.
x=\frac{50±2\sqrt{703}}{2\times 3}
-50 ning teskarisi 50 ga teng.
x=\frac{50±2\sqrt{703}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{703}+50}{6}
x=\frac{50±2\sqrt{703}}{6} tenglamasini yeching, bunda ± musbat. 50 ni 2\sqrt{703} ga qo'shish.
x=\frac{\sqrt{703}+25}{3}
50+2\sqrt{703} ni 6 ga bo'lish.
x=\frac{50-2\sqrt{703}}{6}
x=\frac{50±2\sqrt{703}}{6} tenglamasini yeching, bunda ± manfiy. 50 dan 2\sqrt{703} ni ayirish.
x=\frac{25-\sqrt{703}}{3}
50-2\sqrt{703} ni 6 ga bo'lish.
x=\frac{\sqrt{703}+25}{3} x=\frac{25-\sqrt{703}}{3}
Tenglama yechildi.
3x^{2}-50x-26=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-50x-26-\left(-26\right)=-\left(-26\right)
26 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}-50x=-\left(-26\right)
O‘zidan -26 ayirilsa 0 qoladi.
3x^{2}-50x=26
0 dan -26 ni ayirish.
\frac{3x^{2}-50x}{3}=\frac{26}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{50}{3}x=\frac{26}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{50}{3}x+\left(-\frac{25}{3}\right)^{2}=\frac{26}{3}+\left(-\frac{25}{3}\right)^{2}
-\frac{50}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{3} olish uchun. Keyin, -\frac{25}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{26}{3}+\frac{625}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{3} kvadratini chiqarish.
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{703}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{26}{3} ni \frac{625}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{25}{3}\right)^{2}=\frac{703}{9}
x^{2}-\frac{50}{3}x+\frac{625}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{3}\right)^{2}}=\sqrt{\frac{703}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{3}=\frac{\sqrt{703}}{3} x-\frac{25}{3}=-\frac{\sqrt{703}}{3}
Qisqartirish.
x=\frac{\sqrt{703}+25}{3} x=\frac{25-\sqrt{703}}{3}
\frac{25}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}