Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-2x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -2 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3}}{2\times 3}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{-8}}{2\times 3}
4 ni -12 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{2}i}{2\times 3}
-8 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{2}i}{2\times 3}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2\sqrt{2}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2+2\sqrt{2}i}{6}
x=\frac{2±2\sqrt{2}i}{6} tenglamasini yeching, bunda ± musbat. 2 ni 2i\sqrt{2} ga qo'shish.
x=\frac{1+\sqrt{2}i}{3}
2+2i\sqrt{2} ni 6 ga bo'lish.
x=\frac{-2\sqrt{2}i+2}{6}
x=\frac{2±2\sqrt{2}i}{6} tenglamasini yeching, bunda ± manfiy. 2 dan 2i\sqrt{2} ni ayirish.
x=\frac{-\sqrt{2}i+1}{3}
2-2i\sqrt{2} ni 6 ga bo'lish.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
Tenglama yechildi.
3x^{2}-2x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-2x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
3x^{2}-2x=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{3x^{2}-2x}{3}=-\frac{1}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{2}{3}x=-\frac{1}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{1}{3}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{2}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{3} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{3}\right)^{2}=-\frac{2}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{\sqrt{2}i}{3} x-\frac{1}{3}=-\frac{\sqrt{2}i}{3}
Qisqartirish.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.