Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-19x-18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -19 ni b va -18 ni c bilan almashtiring.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 3\left(-18\right)}}{2\times 3}
-19 kvadratini chiqarish.
x=\frac{-\left(-19\right)±\sqrt{361-12\left(-18\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{361+216}}{2\times 3}
-12 ni -18 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{577}}{2\times 3}
361 ni 216 ga qo'shish.
x=\frac{19±\sqrt{577}}{2\times 3}
-19 ning teskarisi 19 ga teng.
x=\frac{19±\sqrt{577}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{577}+19}{6}
x=\frac{19±\sqrt{577}}{6} tenglamasini yeching, bunda ± musbat. 19 ni \sqrt{577} ga qo'shish.
x=\frac{19-\sqrt{577}}{6}
x=\frac{19±\sqrt{577}}{6} tenglamasini yeching, bunda ± manfiy. 19 dan \sqrt{577} ni ayirish.
x=\frac{\sqrt{577}+19}{6} x=\frac{19-\sqrt{577}}{6}
Tenglama yechildi.
3x^{2}-19x-18=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}-19x-18-\left(-18\right)=-\left(-18\right)
18 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}-19x=-\left(-18\right)
O‘zidan -18 ayirilsa 0 qoladi.
3x^{2}-19x=18
0 dan -18 ni ayirish.
\frac{3x^{2}-19x}{3}=\frac{18}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{19}{3}x=\frac{18}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{3}x=6
18 ni 3 ga bo'lish.
x^{2}-\frac{19}{3}x+\left(-\frac{19}{6}\right)^{2}=6+\left(-\frac{19}{6}\right)^{2}
-\frac{19}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{6} olish uchun. Keyin, -\frac{19}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{3}x+\frac{361}{36}=6+\frac{361}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{6} kvadratini chiqarish.
x^{2}-\frac{19}{3}x+\frac{361}{36}=\frac{577}{36}
6 ni \frac{361}{36} ga qo'shish.
\left(x-\frac{19}{6}\right)^{2}=\frac{577}{36}
x^{2}-\frac{19}{3}x+\frac{361}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{6}\right)^{2}}=\sqrt{\frac{577}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{6}=\frac{\sqrt{577}}{6} x-\frac{19}{6}=-\frac{\sqrt{577}}{6}
Qisqartirish.
x=\frac{\sqrt{577}+19}{6} x=\frac{19-\sqrt{577}}{6}
\frac{19}{6} ni tenglamaning ikkala tarafiga qo'shish.