Omil
\left(x-1\right)\left(3x+4\right)
Baholash
\left(x-1\right)\left(3x+4\right)
Grafik
Viktorina
Polynomial
3 { x }^{ 2 } +x-4
Baham ko'rish
Klipbordga nusxa olish
a+b=1 ab=3\left(-4\right)=-12
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 3x^{2}+ax+bx-4 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,12 -2,6 -3,4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+12=11 -2+6=4 -3+4=1
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=4
Yechim – 1 yigʻindisini beruvchi juftlik.
\left(3x^{2}-3x\right)+\left(4x-4\right)
3x^{2}+x-4 ni \left(3x^{2}-3x\right)+\left(4x-4\right) sifatida qaytadan yozish.
3x\left(x-1\right)+4\left(x-1\right)
Birinchi guruhda 3x ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(x-1\right)\left(3x+4\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
3x^{2}+x-4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-4\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1-4\times 3\left(-4\right)}}{2\times 3}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-12\left(-4\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+48}}{2\times 3}
-12 ni -4 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{49}}{2\times 3}
1 ni 48 ga qo'shish.
x=\frac{-1±7}{2\times 3}
49 ning kvadrat ildizini chiqarish.
x=\frac{-1±7}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{6}{6}
x=\frac{-1±7}{6} tenglamasini yeching, bunda ± musbat. -1 ni 7 ga qo'shish.
x=1
6 ni 6 ga bo'lish.
x=-\frac{8}{6}
x=\frac{-1±7}{6} tenglamasini yeching, bunda ± manfiy. -1 dan 7 ni ayirish.
x=-\frac{4}{3}
\frac{-8}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
3x^{2}+x-4=3\left(x-1\right)\left(x-\left(-\frac{4}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1 ga va x_{2} uchun -\frac{4}{3} ga bo‘ling.
3x^{2}+x-4=3\left(x-1\right)\left(x+\frac{4}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
3x^{2}+x-4=3\left(x-1\right)\times \frac{3x+4}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
3x^{2}+x-4=\left(x-1\right)\left(3x+4\right)
3 va 3 ichida eng katta umumiy 3 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}